Loading…

Numerical integration of Hamiltonian problems by G-symplectic methods

It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such method...

Full description

Saved in:
Bibliographic Details
Published in:Advances in computational mathematics 2014-04, Vol.40 (2), p.553-575
Main Authors: D’Ambrosio, Raffaele, De Martino, Giuseppe, Paternoster, Beatrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3
cites cdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3
container_end_page 575
container_issue 2
container_start_page 553
container_title Advances in computational mathematics
container_volume 40
creator D’Ambrosio, Raffaele
De Martino, Giuseppe
Paternoster, Beatrice
description It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.
doi_str_mv 10.1007/s10444-013-9318-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551050014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551050014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gyshjuHOfDI6pKW6mCBWbLce3iKomLnQztr8dVmJnudHqf091DyCPCMwJULxGBc04BcypyrOn5isywqBgVaX6dekBBKyzrW3IX4wEARFkVM7J8HzsTnFZt5vrB7IManO8zb7O16lw7-N6pPjsG37Smi1lzylY0nrpja_TgdNaZ4dvv4j25saqN5uGvzsnX2_Jzsabbj9Vm8bqlOhc4UJtzxnXJLauh0aAt1DWrmK0aXYJSosGCc2ZLLnYaQTEBrESdKxB5Yat6l8_J07Q3HfQzmjjIzkVt2lb1xo9RYlEgFADIUxSnqA4-xmCsPAbXqXCSCPKiTE7KZFImL8rkOTFsYmLK9nsT5MGPoU8f_QP9AhlCbsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551050014</pqid></control><display><type>article</type><title>Numerical integration of Hamiltonian problems by G-symplectic methods</title><source>Springer Link</source><creator>D’Ambrosio, Raffaele ; De Martino, Giuseppe ; Paternoster, Beatrice</creator><creatorcontrib>D’Ambrosio, Raffaele ; De Martino, Giuseppe ; Paternoster, Beatrice</creatorcontrib><description>It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-013-9318-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Conservation ; Convergence ; Deviation ; Joints ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Runge-Kutta method ; Solvers ; Symmetry ; Visualization</subject><ispartof>Advances in computational mathematics, 2014-04, Vol.40 (2), p.553-575</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</citedby><cites>FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>D’Ambrosio, Raffaele</creatorcontrib><creatorcontrib>De Martino, Giuseppe</creatorcontrib><creatorcontrib>Paternoster, Beatrice</creatorcontrib><title>Numerical integration of Hamiltonian problems by G-symplectic methods</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Conservation</subject><subject>Convergence</subject><subject>Deviation</subject><subject>Joints</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Runge-Kutta method</subject><subject>Solvers</subject><subject>Symmetry</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gyshjuHOfDI6pKW6mCBWbLce3iKomLnQztr8dVmJnudHqf091DyCPCMwJULxGBc04BcypyrOn5isywqBgVaX6dekBBKyzrW3IX4wEARFkVM7J8HzsTnFZt5vrB7IManO8zb7O16lw7-N6pPjsG37Smi1lzylY0nrpja_TgdNaZ4dvv4j25saqN5uGvzsnX2_Jzsabbj9Vm8bqlOhc4UJtzxnXJLauh0aAt1DWrmK0aXYJSosGCc2ZLLnYaQTEBrESdKxB5Yat6l8_J07Q3HfQzmjjIzkVt2lb1xo9RYlEgFADIUxSnqA4-xmCsPAbXqXCSCPKiTE7KZFImL8rkOTFsYmLK9nsT5MGPoU8f_QP9AhlCbsw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>D’Ambrosio, Raffaele</creator><creator>De Martino, Giuseppe</creator><creator>Paternoster, Beatrice</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Numerical integration of Hamiltonian problems by G-symplectic methods</title><author>D’Ambrosio, Raffaele ; De Martino, Giuseppe ; Paternoster, Beatrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Conservation</topic><topic>Convergence</topic><topic>Deviation</topic><topic>Joints</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Runge-Kutta method</topic><topic>Solvers</topic><topic>Symmetry</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Ambrosio, Raffaele</creatorcontrib><creatorcontrib>De Martino, Giuseppe</creatorcontrib><creatorcontrib>Paternoster, Beatrice</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Ambrosio, Raffaele</au><au>De Martino, Giuseppe</au><au>Paternoster, Beatrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical integration of Hamiltonian problems by G-symplectic methods</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>40</volume><issue>2</issue><spage>553</spage><epage>575</epage><pages>553-575</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-013-9318-z</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2014-04, Vol.40 (2), p.553-575
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_miscellaneous_1551050014
source Springer Link
subjects Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Conservation
Convergence
Deviation
Joints
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Runge-Kutta method
Solvers
Symmetry
Visualization
title Numerical integration of Hamiltonian problems by G-symplectic methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20integration%20of%20Hamiltonian%20problems%20by%20G-symplectic%20methods&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=D%E2%80%99Ambrosio,%20Raffaele&rft.date=2014-04-01&rft.volume=40&rft.issue=2&rft.spage=553&rft.epage=575&rft.pages=553-575&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-013-9318-z&rft_dat=%3Cproquest_cross%3E1551050014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551050014&rft_id=info:pmid/&rfr_iscdi=true