Loading…
Numerical integration of Hamiltonian problems by G-symplectic methods
It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such method...
Saved in:
Published in: | Advances in computational mathematics 2014-04, Vol.40 (2), p.553-575 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3 |
container_end_page | 575 |
container_issue | 2 |
container_start_page | 553 |
container_title | Advances in computational mathematics |
container_volume | 40 |
creator | D’Ambrosio, Raffaele De Martino, Giuseppe Paternoster, Beatrice |
description | It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit. |
doi_str_mv | 10.1007/s10444-013-9318-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551050014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551050014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gyshjuHOfDI6pKW6mCBWbLce3iKomLnQztr8dVmJnudHqf091DyCPCMwJULxGBc04BcypyrOn5isywqBgVaX6dekBBKyzrW3IX4wEARFkVM7J8HzsTnFZt5vrB7IManO8zb7O16lw7-N6pPjsG37Smi1lzylY0nrpja_TgdNaZ4dvv4j25saqN5uGvzsnX2_Jzsabbj9Vm8bqlOhc4UJtzxnXJLauh0aAt1DWrmK0aXYJSosGCc2ZLLnYaQTEBrESdKxB5Yat6l8_J07Q3HfQzmjjIzkVt2lb1xo9RYlEgFADIUxSnqA4-xmCsPAbXqXCSCPKiTE7KZFImL8rkOTFsYmLK9nsT5MGPoU8f_QP9AhlCbsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551050014</pqid></control><display><type>article</type><title>Numerical integration of Hamiltonian problems by G-symplectic methods</title><source>Springer Link</source><creator>D’Ambrosio, Raffaele ; De Martino, Giuseppe ; Paternoster, Beatrice</creator><creatorcontrib>D’Ambrosio, Raffaele ; De Martino, Giuseppe ; Paternoster, Beatrice</creatorcontrib><description>It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-013-9318-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Conservation ; Convergence ; Deviation ; Joints ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Runge-Kutta method ; Solvers ; Symmetry ; Visualization</subject><ispartof>Advances in computational mathematics, 2014-04, Vol.40 (2), p.553-575</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</citedby><cites>FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>D’Ambrosio, Raffaele</creatorcontrib><creatorcontrib>De Martino, Giuseppe</creatorcontrib><creatorcontrib>Paternoster, Beatrice</creatorcontrib><title>Numerical integration of Hamiltonian problems by G-symplectic methods</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Conservation</subject><subject>Convergence</subject><subject>Deviation</subject><subject>Joints</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Runge-Kutta method</subject><subject>Solvers</subject><subject>Symmetry</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gyshjuHOfDI6pKW6mCBWbLce3iKomLnQztr8dVmJnudHqf091DyCPCMwJULxGBc04BcypyrOn5isywqBgVaX6dekBBKyzrW3IX4wEARFkVM7J8HzsTnFZt5vrB7IManO8zb7O16lw7-N6pPjsG37Smi1lzylY0nrpja_TgdNaZ4dvv4j25saqN5uGvzsnX2_Jzsabbj9Vm8bqlOhc4UJtzxnXJLauh0aAt1DWrmK0aXYJSosGCc2ZLLnYaQTEBrESdKxB5Yat6l8_J07Q3HfQzmjjIzkVt2lb1xo9RYlEgFADIUxSnqA4-xmCsPAbXqXCSCPKiTE7KZFImL8rkOTFsYmLK9nsT5MGPoU8f_QP9AhlCbsw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>D’Ambrosio, Raffaele</creator><creator>De Martino, Giuseppe</creator><creator>Paternoster, Beatrice</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Numerical integration of Hamiltonian problems by G-symplectic methods</title><author>D’Ambrosio, Raffaele ; De Martino, Giuseppe ; Paternoster, Beatrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Conservation</topic><topic>Convergence</topic><topic>Deviation</topic><topic>Joints</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Runge-Kutta method</topic><topic>Solvers</topic><topic>Symmetry</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Ambrosio, Raffaele</creatorcontrib><creatorcontrib>De Martino, Giuseppe</creatorcontrib><creatorcontrib>Paternoster, Beatrice</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Ambrosio, Raffaele</au><au>De Martino, Giuseppe</au><au>Paternoster, Beatrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical integration of Hamiltonian problems by G-symplectic methods</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>40</volume><issue>2</issue><spage>553</spage><epage>575</epage><pages>553-575</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>It is the purpose of this paper to consider the employ of General Linear Methods (GLMs) as geometric numerical solvers for the treatment of Hamiltonian problems. Indeed, even if the numerical flow generated by a GLM cannot be symplectic, we exploit here a concept of near conservation for such methods which, properly combined with other desirable features (such as symmetry and boundedness of parasitic components), allows to achieve an accurate conservation of the Hamiltonian. In this paper we focus our attention on the connection between order of convergence and Hamiltonian deviation by multivalue methods. Moreover, we derive a semi-implicit GLM which results competitive to symplectic Runge-Kutta methods, which are notoriously implicit.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-013-9318-z</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2014-04, Vol.40 (2), p.553-575 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_miscellaneous_1551050014 |
source | Springer Link |
subjects | Computational Mathematics and Numerical Analysis Computational Science and Engineering Conservation Convergence Deviation Joints Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Runge-Kutta method Solvers Symmetry Visualization |
title | Numerical integration of Hamiltonian problems by G-symplectic methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20integration%20of%20Hamiltonian%20problems%20by%20G-symplectic%20methods&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=D%E2%80%99Ambrosio,%20Raffaele&rft.date=2014-04-01&rft.volume=40&rft.issue=2&rft.spage=553&rft.epage=575&rft.pages=553-575&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-013-9318-z&rft_dat=%3Cproquest_cross%3E1551050014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-f3424c64f280bc0cf088272f7bc60aa9b15442f649dc10a290261c3a0935f78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551050014&rft_id=info:pmid/&rfr_iscdi=true |