Loading…

Computing approximate Nash equilibria in general network revenue management games

•A network revenue management problem under competition is studied.•Booking limits for competing airlines are computed.•A heuristic for computing an approximate Nash equilibrium is introduced.•Payoff values are computed on demand, i.e. there is no need to provide the complete playoff matrix in advan...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2014-09, Vol.237 (3), p.1008-1020
Main Authors: Grauberger, W., Kimms, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73
cites cdi_FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73
container_end_page 1020
container_issue 3
container_start_page 1008
container_title European journal of operational research
container_volume 237
creator Grauberger, W.
Kimms, A.
description •A network revenue management problem under competition is studied.•Booking limits for competing airlines are computed.•A heuristic for computing an approximate Nash equilibrium is introduced.•Payoff values are computed on demand, i.e. there is no need to provide the complete playoff matrix in advance. Computing optimal capacity allocations in network revenue management is computationally hard. The problem of computing exact Nash equilibria in non-zero-sum games is computationally hard, too. We present a fast heuristic that, in case it cannot converge to an exact Nash equilibrium, computes an approximation to it in general network revenue management problems under competition. We also investigate the question whether it is worth taking competition into account when making (network) capacity allocation decisions. Computational results show that the payoffs in the approximate equilibria are very close to those in exact ones. Taking competition into account never leads to a lower revenue than ignoring competition, no matter what the competitor does. Since we apply linear continuous models, computation time is very short.
doi_str_mv 10.1016/j.ejor.2014.02.045
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551056391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221714001805</els_id><sourcerecordid>1551056391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoINs0fyAnQS-92BnJluWFXsrSJoGlpZCcxVgeb-Xa8q5kJ-m_j5btKYec5vK9x5uPsWsBuQBR3fQ59VPIJYgyB5lDqc7YStRaZlVdwQe2gkLrTEqhL9jHGHsAEEqoFfu9mcb9Mju_47jfh-nFjTgT_4nxD6fD4gbXBIfceb4jTwEH7ml-nsJfHuiJ_EJ8RI87GsnPfIcjxU_svMMh0tX_e8kef3x_2Nxl21-395tv28wWazlnqEBqqlS71hoabBGLFoq601DbDtqOGtU0iKKTba2h7LCsrLQgscaiqRpdXLIvp960-rBQnM3ooqVhQE_TEo1QSoCqirVI6Oc3aD8twad1iZKVrEsBZaLkibJhijFQZ_Yh2Qj_jABztGx6c7RsjpYNSJMsp9DXU4jSq0-OgonWkbfUukB2Nu3k3ou_ApwfhvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526284104</pqid></control><display><type>article</type><title>Computing approximate Nash equilibria in general network revenue management games</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Grauberger, W. ; Kimms, A.</creator><creatorcontrib>Grauberger, W. ; Kimms, A.</creatorcontrib><description>•A network revenue management problem under competition is studied.•Booking limits for competing airlines are computed.•A heuristic for computing an approximate Nash equilibrium is introduced.•Payoff values are computed on demand, i.e. there is no need to provide the complete playoff matrix in advance. Computing optimal capacity allocations in network revenue management is computationally hard. The problem of computing exact Nash equilibria in non-zero-sum games is computationally hard, too. We present a fast heuristic that, in case it cannot converge to an exact Nash equilibrium, computes an approximation to it in general network revenue management problems under competition. We also investigate the question whether it is worth taking competition into account when making (network) capacity allocation decisions. Computational results show that the payoffs in the approximate equilibria are very close to those in exact ones. Taking competition into account never leads to a lower revenue than ignoring competition, no matter what the competitor does. Since we apply linear continuous models, computation time is very short.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2014.02.045</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmic game theory ; Allocations ; Approximate Nash equilibria ; Approximation ; Competition ; Computation ; Equilibrium ; Game theory ; Heuristic ; Management ; Mathematical analysis ; Network revenue management ; Networks ; Resource allocation ; Revenue management ; Revenues ; Studies</subject><ispartof>European journal of operational research, 2014-09, Vol.237 (3), p.1008-1020</ispartof><rights>2014</rights><rights>Copyright Elsevier Sequoia S.A. Sep 16, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73</citedby><cites>FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grauberger, W.</creatorcontrib><creatorcontrib>Kimms, A.</creatorcontrib><title>Computing approximate Nash equilibria in general network revenue management games</title><title>European journal of operational research</title><description>•A network revenue management problem under competition is studied.•Booking limits for competing airlines are computed.•A heuristic for computing an approximate Nash equilibrium is introduced.•Payoff values are computed on demand, i.e. there is no need to provide the complete playoff matrix in advance. Computing optimal capacity allocations in network revenue management is computationally hard. The problem of computing exact Nash equilibria in non-zero-sum games is computationally hard, too. We present a fast heuristic that, in case it cannot converge to an exact Nash equilibrium, computes an approximation to it in general network revenue management problems under competition. We also investigate the question whether it is worth taking competition into account when making (network) capacity allocation decisions. Computational results show that the payoffs in the approximate equilibria are very close to those in exact ones. Taking competition into account never leads to a lower revenue than ignoring competition, no matter what the competitor does. Since we apply linear continuous models, computation time is very short.</description><subject>Algorithmic game theory</subject><subject>Allocations</subject><subject>Approximate Nash equilibria</subject><subject>Approximation</subject><subject>Competition</subject><subject>Computation</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Heuristic</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Network revenue management</subject><subject>Networks</subject><subject>Resource allocation</subject><subject>Revenue management</subject><subject>Revenues</subject><subject>Studies</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoINs0fyAnQS-92BnJluWFXsrSJoGlpZCcxVgeb-Xa8q5kJ-m_j5btKYec5vK9x5uPsWsBuQBR3fQ59VPIJYgyB5lDqc7YStRaZlVdwQe2gkLrTEqhL9jHGHsAEEqoFfu9mcb9Mju_47jfh-nFjTgT_4nxD6fD4gbXBIfceb4jTwEH7ml-nsJfHuiJ_EJ8RI87GsnPfIcjxU_svMMh0tX_e8kef3x_2Nxl21-395tv28wWazlnqEBqqlS71hoabBGLFoq601DbDtqOGtU0iKKTba2h7LCsrLQgscaiqRpdXLIvp960-rBQnM3ooqVhQE_TEo1QSoCqirVI6Oc3aD8twad1iZKVrEsBZaLkibJhijFQZ_Yh2Qj_jABztGx6c7RsjpYNSJMsp9DXU4jSq0-OgonWkbfUukB2Nu3k3ou_ApwfhvU</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Grauberger, W.</creator><creator>Kimms, A.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope></search><sort><creationdate>20140916</creationdate><title>Computing approximate Nash equilibria in general network revenue management games</title><author>Grauberger, W. ; Kimms, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmic game theory</topic><topic>Allocations</topic><topic>Approximate Nash equilibria</topic><topic>Approximation</topic><topic>Competition</topic><topic>Computation</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Heuristic</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Network revenue management</topic><topic>Networks</topic><topic>Resource allocation</topic><topic>Revenue management</topic><topic>Revenues</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grauberger, W.</creatorcontrib><creatorcontrib>Kimms, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grauberger, W.</au><au>Kimms, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing approximate Nash equilibria in general network revenue management games</atitle><jtitle>European journal of operational research</jtitle><date>2014-09-16</date><risdate>2014</risdate><volume>237</volume><issue>3</issue><spage>1008</spage><epage>1020</epage><pages>1008-1020</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•A network revenue management problem under competition is studied.•Booking limits for competing airlines are computed.•A heuristic for computing an approximate Nash equilibrium is introduced.•Payoff values are computed on demand, i.e. there is no need to provide the complete playoff matrix in advance. Computing optimal capacity allocations in network revenue management is computationally hard. The problem of computing exact Nash equilibria in non-zero-sum games is computationally hard, too. We present a fast heuristic that, in case it cannot converge to an exact Nash equilibrium, computes an approximation to it in general network revenue management problems under competition. We also investigate the question whether it is worth taking competition into account when making (network) capacity allocation decisions. Computational results show that the payoffs in the approximate equilibria are very close to those in exact ones. Taking competition into account never leads to a lower revenue than ignoring competition, no matter what the competitor does. Since we apply linear continuous models, computation time is very short.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2014.02.045</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2014-09, Vol.237 (3), p.1008-1020
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_1551056391
source ScienceDirect Freedom Collection 2022-2024
subjects Algorithmic game theory
Allocations
Approximate Nash equilibria
Approximation
Competition
Computation
Equilibrium
Game theory
Heuristic
Management
Mathematical analysis
Network revenue management
Networks
Resource allocation
Revenue management
Revenues
Studies
title Computing approximate Nash equilibria in general network revenue management games
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20approximate%20Nash%20equilibria%20in%20general%20network%20revenue%20management%20games&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Grauberger,%20W.&rft.date=2014-09-16&rft.volume=237&rft.issue=3&rft.spage=1008&rft.epage=1020&rft.pages=1008-1020&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2014.02.045&rft_dat=%3Cproquest_cross%3E1551056391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a5027e65d9770badaa3d038f708cf0dfeb5bbaa1f2d8704fa46c2c02a8a3b6b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1526284104&rft_id=info:pmid/&rfr_iscdi=true