Loading…

Structure and properties of heat-resistant ABS resins innovated by NSM random copolymer

N‐phenylmaleimide(NPMI)‐styrene(St)‐maleic anhydride (MAH) copolymer was synthesized in xylene solution by one‐step free radical copolymerization, using di‐tert‐butyl diperoxyterephthalate as initiator. The resulting heat‐resistant NPMI‐St‐MAH (NSM) copolymer was characterized by Fourier transform i...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2013-06, Vol.34 (6), p.920-928
Main Authors: Dong, Jianting, Zhao, Chenyang, Tan, Zaishang, Li, Suming, Fan, Zhongyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:N‐phenylmaleimide(NPMI)‐styrene(St)‐maleic anhydride (MAH) copolymer was synthesized in xylene solution by one‐step free radical copolymerization, using di‐tert‐butyl diperoxyterephthalate as initiator. The resulting heat‐resistant NPMI‐St‐MAH (NSM) copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography, differential scanning calorimetry, elemental analysis, and nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR). The results show that NPMI‐St‐MAH exhibits a random sequence distribution with a NPMI: St: MAH weight ratio of 47:51:2. The glass transition temperature (Tg) is about 190.0°C. Blends of acrylonitrile‐butadiene‐styrene (ABS) with various contents of NSM were prepared using a twin‐screw extruder, and the effects of NSM content on the thermal and mechanical properties of ABS blends were investigated. It was found that the Vicat softening point, tensile strength, flexural strength, flexural modulus, and Rockwell hardness of the ABS/NSM blends were all significantly enhanced with increasing NSM content, whereas the impact strength shows the opposite trend. The impact fracture surface morphology was characterized by scanning electron microscope. It was revealed that cavitation and cavity coalescence resulted in the toughening of the material, which well accounts for the decrease of impact strength with increasing NSM content. In addition, the rheological properties of the blends were examined using a capillary rheometer. The blends present excellent processing property and are suitable for injection molding, although a pseudoplastic behavior was observed in all cases. POLYM. COMPOS., 34:920–928, 2013. © 2013 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.22498