Loading…

Effect of Solution Polarity and Temperature on Adsorption Separation of Erythromycin A and C onto Macroporous Resin SP825

In this article, macro-porous resin, SP825, was used as adsorbent for the adsorption separation of erythromycin A (EA) and erythromycin C (EC). The effect of solution polarity and temperature on adsorption of EA and EC with their mixture was determined by batch adsorption experiments in detail. Adso...

Full description

Saved in:
Bibliographic Details
Published in:Separation science and technology 2014-04, Vol.49 (6), p.898-906
Main Authors: Jin, Xin, Chen, Kui, Zhu, Jia-wen, Wu, Yan-yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, macro-porous resin, SP825, was used as adsorbent for the adsorption separation of erythromycin A (EA) and erythromycin C (EC). The effect of solution polarity and temperature on adsorption of EA and EC with their mixture was determined by batch adsorption experiments in detail. Adsorption isotherms were modeled by competitive Langmuir equations, selectivity coefficients were obtained, and thermodynamic parameters such as changes of Gibbs free energy, enthalpy, and entropy were calculated by van't Hoff relationships. Then, dynamic adsorption and desorption separation experiments with the appropriate solution polarity and temperature obtained from the batch experiments were examined in a fixed-bed. Breakthrough curves were determined to understand the different dynamic adsorption performances for EA and EC. After the adsorption and desorption separation, the mass concentration ratio of EA to EC increased sharply from 9:1 to 25.3:1.
ISSN:0149-6395
1520-5754
DOI:10.1080/01496395.2013.863341