Loading…

Bioactivity potential of calcium alumino-silicate glasses and glass–ceramics containing nitrogen and fluorine

Calcium alumino-silicate glasses of general composition (in eq.%) 28Ca:57Si:15Al:[100 − ( x  +  y )]O: x N: y F ( x  = 0 or 20 and y  = 0, 3 or 5) and their glass–ceramic counterparts were immersed in simulated body fluid (SBF) at 37 ± 0.5 °C for 28 days to assess their potential bioactivity. The gl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2014-07, Vol.49 (13), p.4590-4594
Main Authors: Hanifi, A. R., Crowley, C. M., Pomeroy, M. J., Hampshire, Stuart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03
cites cdi_FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03
container_end_page 4594
container_issue 13
container_start_page 4590
container_title Journal of materials science
container_volume 49
creator Hanifi, A. R.
Crowley, C. M.
Pomeroy, M. J.
Hampshire, Stuart
description Calcium alumino-silicate glasses of general composition (in eq.%) 28Ca:57Si:15Al:[100 − ( x  +  y )]O: x N: y F ( x  = 0 or 20 and y  = 0, 3 or 5) and their glass–ceramic counterparts were immersed in simulated body fluid (SBF) at 37 ± 0.5 °C for 28 days to assess their potential bioactivity. The glasses showed no Ca release or surface calcium phosphate deposition due to their high network connectivities (>2.55). The glass–ceramics all showed potential bioactivity, as the SBF became enriched in Ca and calcium phosphate deposits formed on their surfaces. This was a result of Ca release from crystalline phases (predominantly wollastonite in the case of CaSiAlOF glass–ceramics and gehlenite in the case of CaSiAlONF glass–ceramics). No aluminium was leached from the glass–ceramics into the SBF, due to its pH always exceeding 7.0.
doi_str_mv 10.1007/s10853-014-8159-6
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551091263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A371000054</galeid><sourcerecordid>A371000054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03</originalsourceid><addsrcrecordid>eNp1kcuKFDEUhoMo2I4-gLsCN7qoMSeV1GU5Dl4GBgQv63A6fVJkSCVtkhJn5zv4hj6JaUuQESSLhPD94c_5GHsK_Bw4H15m4KPqWg6yHUFNbX-P7UANXStH3t1nO86FaIXs4SF7lPMN51wNAnYsvnIRTXFfXbltjrFQKA59E21j0Bu3Lg36dXEhttl5Z7BQM3vMmXKD4bCdf37_YSjh4kxuTAwFXXBhboIrKc4UfoPWrzG5QI_ZA4s-05M_-xn7_Ob1p8t37fX7t1eXF9etkUKUdhSSxKFXoDoQygyWJMihH8VkJ26E7YSVEicEC9iNezPZg5Fqj8MeSEnk3Rl7vr17TPHLSrnoxWVD3mOguGYNSgGfQPRdRZ_9g97ENYXaTguhJiVggL5S5xs1oyftgo0loanrQPXjMZB19f6iG6qOOlxZAy_uBE6ToW9lxjVnffXxw10WNtakmHMiq4_JLZhuNXB98qs3v7r61Se_-lRIbJlc2TBT-lv7_6Ffsgqo0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259521716</pqid></control><display><type>article</type><title>Bioactivity potential of calcium alumino-silicate glasses and glass–ceramics containing nitrogen and fluorine</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hanifi, A. R. ; Crowley, C. M. ; Pomeroy, M. J. ; Hampshire, Stuart</creator><creatorcontrib>Hanifi, A. R. ; Crowley, C. M. ; Pomeroy, M. J. ; Hampshire, Stuart</creatorcontrib><description>Calcium alumino-silicate glasses of general composition (in eq.%) 28Ca:57Si:15Al:[100 − ( x  +  y )]O: x N: y F ( x  = 0 or 20 and y  = 0, 3 or 5) and their glass–ceramic counterparts were immersed in simulated body fluid (SBF) at 37 ± 0.5 °C for 28 days to assess their potential bioactivity. The glasses showed no Ca release or surface calcium phosphate deposition due to their high network connectivities (&gt;2.55). The glass–ceramics all showed potential bioactivity, as the SBF became enriched in Ca and calcium phosphate deposits formed on their surfaces. This was a result of Ca release from crystalline phases (predominantly wollastonite in the case of CaSiAlOF glass–ceramics and gehlenite in the case of CaSiAlONF glass–ceramics). No aluminium was leached from the glass–ceramics into the SBF, due to its pH always exceeding 7.0.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-014-8159-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminosilicates ; Aluminum ; Aluminum silicates ; Biochemistry ; Biocompatibility ; Biological activity ; Biomedical materials ; Body fluids ; Calcium ; Calcium aluminate ; Calcium aluminum silicates ; Calcium phosphate ; Calcium phosphates ; Ceramic materials ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Deposition ; Fluorides ; Fluorine ; Gehlenite ; Glass ; Glass ceramics ; In vitro methods and tests ; Materials Science ; Phosphates ; Polymer Sciences ; Silicates ; Solid Mechanics ; Surgical implants ; Wollastonite</subject><ispartof>Journal of materials science, 2014-07, Vol.49 (13), p.4590-4594</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03</citedby><cites>FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hanifi, A. R.</creatorcontrib><creatorcontrib>Crowley, C. M.</creatorcontrib><creatorcontrib>Pomeroy, M. J.</creatorcontrib><creatorcontrib>Hampshire, Stuart</creatorcontrib><title>Bioactivity potential of calcium alumino-silicate glasses and glass–ceramics containing nitrogen and fluorine</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Calcium alumino-silicate glasses of general composition (in eq.%) 28Ca:57Si:15Al:[100 − ( x  +  y )]O: x N: y F ( x  = 0 or 20 and y  = 0, 3 or 5) and their glass–ceramic counterparts were immersed in simulated body fluid (SBF) at 37 ± 0.5 °C for 28 days to assess their potential bioactivity. The glasses showed no Ca release or surface calcium phosphate deposition due to their high network connectivities (&gt;2.55). The glass–ceramics all showed potential bioactivity, as the SBF became enriched in Ca and calcium phosphate deposits formed on their surfaces. This was a result of Ca release from crystalline phases (predominantly wollastonite in the case of CaSiAlOF glass–ceramics and gehlenite in the case of CaSiAlONF glass–ceramics). No aluminium was leached from the glass–ceramics into the SBF, due to its pH always exceeding 7.0.</description><subject>Aluminosilicates</subject><subject>Aluminum</subject><subject>Aluminum silicates</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Calcium</subject><subject>Calcium aluminate</subject><subject>Calcium aluminum silicates</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Deposition</subject><subject>Fluorides</subject><subject>Fluorine</subject><subject>Gehlenite</subject><subject>Glass</subject><subject>Glass ceramics</subject><subject>In vitro methods and tests</subject><subject>Materials Science</subject><subject>Phosphates</subject><subject>Polymer Sciences</subject><subject>Silicates</subject><subject>Solid Mechanics</subject><subject>Surgical implants</subject><subject>Wollastonite</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kcuKFDEUhoMo2I4-gLsCN7qoMSeV1GU5Dl4GBgQv63A6fVJkSCVtkhJn5zv4hj6JaUuQESSLhPD94c_5GHsK_Bw4H15m4KPqWg6yHUFNbX-P7UANXStH3t1nO86FaIXs4SF7lPMN51wNAnYsvnIRTXFfXbltjrFQKA59E21j0Bu3Lg36dXEhttl5Z7BQM3vMmXKD4bCdf37_YSjh4kxuTAwFXXBhboIrKc4UfoPWrzG5QI_ZA4s-05M_-xn7_Ob1p8t37fX7t1eXF9etkUKUdhSSxKFXoDoQygyWJMihH8VkJ26E7YSVEicEC9iNezPZg5Fqj8MeSEnk3Rl7vr17TPHLSrnoxWVD3mOguGYNSgGfQPRdRZ_9g97ENYXaTguhJiVggL5S5xs1oyftgo0loanrQPXjMZB19f6iG6qOOlxZAy_uBE6ToW9lxjVnffXxw10WNtakmHMiq4_JLZhuNXB98qs3v7r61Se_-lRIbJlc2TBT-lv7_6Ffsgqo0A</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Hanifi, A. R.</creator><creator>Crowley, C. M.</creator><creator>Pomeroy, M. J.</creator><creator>Hampshire, Stuart</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140701</creationdate><title>Bioactivity potential of calcium alumino-silicate glasses and glass–ceramics containing nitrogen and fluorine</title><author>Hanifi, A. R. ; Crowley, C. M. ; Pomeroy, M. J. ; Hampshire, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminosilicates</topic><topic>Aluminum</topic><topic>Aluminum silicates</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Calcium</topic><topic>Calcium aluminate</topic><topic>Calcium aluminum silicates</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Deposition</topic><topic>Fluorides</topic><topic>Fluorine</topic><topic>Gehlenite</topic><topic>Glass</topic><topic>Glass ceramics</topic><topic>In vitro methods and tests</topic><topic>Materials Science</topic><topic>Phosphates</topic><topic>Polymer Sciences</topic><topic>Silicates</topic><topic>Solid Mechanics</topic><topic>Surgical implants</topic><topic>Wollastonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanifi, A. R.</creatorcontrib><creatorcontrib>Crowley, C. M.</creatorcontrib><creatorcontrib>Pomeroy, M. J.</creatorcontrib><creatorcontrib>Hampshire, Stuart</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanifi, A. R.</au><au>Crowley, C. M.</au><au>Pomeroy, M. J.</au><au>Hampshire, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioactivity potential of calcium alumino-silicate glasses and glass–ceramics containing nitrogen and fluorine</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>49</volume><issue>13</issue><spage>4590</spage><epage>4594</epage><pages>4590-4594</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Calcium alumino-silicate glasses of general composition (in eq.%) 28Ca:57Si:15Al:[100 − ( x  +  y )]O: x N: y F ( x  = 0 or 20 and y  = 0, 3 or 5) and their glass–ceramic counterparts were immersed in simulated body fluid (SBF) at 37 ± 0.5 °C for 28 days to assess their potential bioactivity. The glasses showed no Ca release or surface calcium phosphate deposition due to their high network connectivities (&gt;2.55). The glass–ceramics all showed potential bioactivity, as the SBF became enriched in Ca and calcium phosphate deposits formed on their surfaces. This was a result of Ca release from crystalline phases (predominantly wollastonite in the case of CaSiAlOF glass–ceramics and gehlenite in the case of CaSiAlONF glass–ceramics). No aluminium was leached from the glass–ceramics into the SBF, due to its pH always exceeding 7.0.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-014-8159-6</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2014-07, Vol.49 (13), p.4590-4594
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1551091263
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Aluminosilicates
Aluminum
Aluminum silicates
Biochemistry
Biocompatibility
Biological activity
Biomedical materials
Body fluids
Calcium
Calcium aluminate
Calcium aluminum silicates
Calcium phosphate
Calcium phosphates
Ceramic materials
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Deposition
Fluorides
Fluorine
Gehlenite
Glass
Glass ceramics
In vitro methods and tests
Materials Science
Phosphates
Polymer Sciences
Silicates
Solid Mechanics
Surgical implants
Wollastonite
title Bioactivity potential of calcium alumino-silicate glasses and glass–ceramics containing nitrogen and fluorine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioactivity%20potential%20of%20calcium%20alumino-silicate%20glasses%20and%20glass%E2%80%93ceramics%20containing%20nitrogen%20and%20fluorine&rft.jtitle=Journal%20of%20materials%20science&rft.au=Hanifi,%20A.%20R.&rft.date=2014-07-01&rft.volume=49&rft.issue=13&rft.spage=4590&rft.epage=4594&rft.pages=4590-4594&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-014-8159-6&rft_dat=%3Cgale_proqu%3EA371000054%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-824e2d65153125c7fe41476829f90c2f32f44a9a1f1a38bc9fdc45ba7b1e54a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259521716&rft_id=info:pmid/&rft_galeid=A371000054&rfr_iscdi=true