Loading…
On the transverse compression response of Kevlar KM2 using fiber-level finite element model
Flexible textile composites like woven Kevlar fabrics are widely used in high velocity impact (HVI) applications. Upon HVI they are subjected to both longitudinal tensile and transverse compressive loads. To understand the role of transverse properties, the single fiber and tow transverse compressio...
Saved in:
Published in: | International journal of solids and structures 2014-06, Vol.51 (13), p.2504-2517 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flexible textile composites like woven Kevlar fabrics are widely used in high velocity impact (HVI) applications. Upon HVI they are subjected to both longitudinal tensile and transverse compressive loads. To understand the role of transverse properties, the single fiber and tow transverse compression response (SFTCR and TTCR) of Kevlar KM2 fibers are numerically analyzed using plane strain finite element (FE) models. A finite strain formulation with a minimum number of 84 finite elements is determined to be required for the fiber cross section to capture the finite strain SFTCR through a mesh convergence study. Comparison of converged numerical solution to the experimental results indicates the dominant role of geometric stiffening at finite strains due to growth in contact width. The TTCR is studied using a fiber length scale FE model of a single tow comprised of 400 fibers transversely loaded between rigid platens. This study along with micrographs of yarn after mechanical compaction illustrates fiber spreading and fiber–fiber contact friction interactions are important deformation mechanisms at finite strains. The TTCR is also studied using homogenized yarn level models with properties from the literature. Comparison of TTCR between fiber length scale and homogenized yarn length scale models indicate the need for a nonlinear material model for homogenized approaches to accurately predict the transverse compression response of the fabrics. |
---|---|
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2014.03.020 |