Loading…

Defective macrophage migration in Gαi2- but not Gαi3-deficient mice

Various heterotrimeric G(i) proteins are considered to be involved in cell migration and effector function of immune cells. The underlying mechanisms, how they control the activation of myeloid effector cells, are not well understood. To elucidate isoform-redundant and -specific roles for Gα(i) prot...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2012-07, Vol.189 (2), p.980-987
Main Authors: Wiege, Kristina, Le, Duc D, Syed, Shahzad N, Ali, Syed R, Novakovic, Ana, Beer-Hammer, Sandra, Piekorz, Roland P, Schmidt, Reinhold E, Nürnberg, Bernd, Gessner, J Engelbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various heterotrimeric G(i) proteins are considered to be involved in cell migration and effector function of immune cells. The underlying mechanisms, how they control the activation of myeloid effector cells, are not well understood. To elucidate isoform-redundant and -specific roles for Gα(i) proteins in these processes, we analyzed mice genetically deficient in Gα(i2) or Gα(i3). First, we show an altered distribution of tissue macrophages and blood monocytes in the absence of Gα(i2) but not Gα(i3). Gα(i2)-deficient but not wild-type or Gα(i3)-deficient mice exhibited reduced recruitment of macrophages in experimental models of thioglycollate-induced peritonitis and LPS-triggered lung injury. In contrast, genetic ablation of Gα(i2) had no effect on Gα(i)-dependent peritoneal cytokine production in vitro and the phagocytosis-promoting function of the Gα(i)-coupled C5a anaphylatoxin receptor by liver macrophages in vivo. Interestingly, actin rearrangement and CCL2- and C5a anaphylatoxin receptor-induced chemotaxis but not macrophage CCR2 and C5a anaphylatoxin receptor expression were reduced in the specific absence of Gα(i2). Furthermore, knockdown of Gα(i2) caused decreased cell migration and motility of RAW 264.7 cells, which was rescued by transfection of Gα(i2) but not Gα(i3). These results indicate that Gα(i2), albeit redundant to Gα(i3) in some macrophage activation processes, clearly exhibits a Gα(i) isoform-specific role in the regulation of macrophage migration.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1200891