Loading…
EVI1 acts as an inducible negative-feedback regulator of NF-κB by inhibiting p65 acetylation
Inflammation is a hallmark of many important human diseases. Appropriate inflammation is critical for host defense; however, an overactive response is detrimental to the host. Thus, inflammation must be tightly regulated. The molecular mechanisms underlying the tight regulation of inflammation remai...
Saved in:
Published in: | The Journal of immunology (1950) 2012-06, Vol.188 (12), p.6371-6380 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inflammation is a hallmark of many important human diseases. Appropriate inflammation is critical for host defense; however, an overactive response is detrimental to the host. Thus, inflammation must be tightly regulated. The molecular mechanisms underlying the tight regulation of inflammation remain largely unknown. Ecotropic viral integration site 1 (EVI1), a proto-oncogene and zinc finger transcription factor, plays important roles in normal development and leukemogenesis. However, its role in regulating NF-κB-dependent inflammation remains unknown. In this article, we show that EVI1 negatively regulates nontypeable Haemophilus influenzae- and TNF-α-induced NF-κB-dependent inflammation in vitro and in vivo. EVI1 directly binds to the NF-κB p65 subunit and inhibits its acetylation at lysine 310, thereby inhibiting its DNA-binding activity. Moreover, expression of EVI1 itself is induced by nontypeable Haemophilus influenzae and TNF-α in an NF-κB-dependent manner, thereby unveiling a novel inducible negative feedback loop to tightly control NF-κB-dependent inflammation. Thus, our study provides important insights into the novel role for EVI1 in negatively regulating NF-κB-dependent inflammation, and it may also shed light on the future development of novel anti-inflammatory strategies. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1103527 |