Loading…

Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication

Retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) belong to the RIG-I-like receptors family of pattern recognition receptors. Both RIG-I and MDA5 have been shown to recognize various viral RNAs, but whether they mediate hepatitis B virus (HBV) infection rem...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2013-09, Vol.191 (6), p.3264-3276
Main Authors: Lu, Hsin-Lin, Liao, Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) belong to the RIG-I-like receptors family of pattern recognition receptors. Both RIG-I and MDA5 have been shown to recognize various viral RNAs, but whether they mediate hepatitis B virus (HBV) infection remains unclear. In this study, we demonstrated that the expression of MDA5, but not RIG-I, was increased in Huh7 cells transfected with the HBV replicative plasmid and in the livers of mice hydrodynamically injected with the HBV replicative plasmid. To further determine the effect of RIG-I-like receptors on HBV replication, we cotransfected the HBV replicative plasmid with RIG-I or MDA5 expression plasmid into Huh7 cells and found that MDA5, but not RIG-I at a similar protein level, significantly inhibited HBV replication. Knockdown of endogenous MDA5, but not RIG-I, in Huh7 cells transfected with the HBV replicative plasmid significantly increased HBV replication. Of particular interest, we found that MDA5, but not RIG-I, was able to associate with HBV-specific nucleic acids, suggesting that MDA5 may sense HBV. Finally, we performed in vivo experiments by hydrodynamic injection of the HBV replicative plasmid into wild-type, MDA5⁻/⁻, MDA5⁺/⁻, or RIG-I⁺/⁻ mice, and found that MDA5⁻/⁻ and MDA5⁺/⁻ mice, but not RIG-I⁺/⁻ mice, exhibited an increase of HBV replication as compared with wild-type mice. Collectively, our in vitro and in vivo studies both support a critical role for MDA5 in the innate immune response against HBV infection.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1300512