Loading…
Pyrrolysyl-tRNA synthetase: An ordinary enzyme but an outstanding genetic code expansion tool
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low select...
Saved in:
Published in: | Biochimica et biophysica acta 2014-06, Vol.1844 (6), p.1059-1070 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNAPyl. These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
•PylRS has high substrate side chain promiscuity.•PylRS has high substrate α-substituent promiscuity.•PylRS doesn't specifically recognize its tRNA anticodon.•Using the Pyl system, 100 non-canonical amino acids or α-hydroxy acids are encoded.•Using the Pyl system, amber, opal, ochre, and AGGA codons are reassigned. |
---|---|
ISSN: | 1570-9639 0006-3002 1878-1454 |
DOI: | 10.1016/j.bbapap.2014.03.002 |