Loading…

Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition

SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to sur...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2014-08, Vol.14 (8), p.4852-4858
Main Authors: Guan, Cao, Wang, Xinghui, Zhang, Qing, Fan, Zhanxi, Zhang, Hua, Fan, Hong Jin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4858
container_issue 8
container_start_page 4852
container_title Nano letters
container_volume 14
creator Guan, Cao
Wang, Xinghui
Zhang, Qing
Fan, Zhanxi
Zhang, Hua
Fan, Hong Jin
description SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanostructure. This structure has radically improved rate capability and cycling stability compared to both bare SnO2 nanowires and solid SnO2@TiO2 core–shell nanowire electrodes. Typically a relatively stable capacity of 393.3 mAh/g has been achieved after 1000 charge–discharge cycles at a current density of 400 mA/g, and 241.2 mAh/g at 3200 mA/g. It is believed that the uniform hollow TiO2 shell provides stable surface protection and the appropriate-sized gap effectively accommodates the expansion of the interior SnO2 nanowire. This ALD-enabled method should be general to many other battery anode and cathode materials, providing a new and highly reproducible and controllable technique for improving battery performance.
doi_str_mv 10.1021/nl502192p
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1553319152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553319152</sourcerecordid><originalsourceid>FETCH-LOGICAL-a306t-a71e78c0e40b083e158b67ec492bfa5338ae5e7d73afd26e4d33d5785393c7f63</originalsourceid><addsrcrecordid>eNpFkU1P3DAQhq0KVChw4A8gX5B62eKPOI6PaGnZSqsisXCOJs6ENXLsxU662nt_OEFd4PTOaJ55NR-EnHP2gzPBr4JXkxix-UKOuZJsVhojDj7iqjgi33J-ZowZqdhXciQUU9oIeUz-LdzT2u_oaoDGI4XQ0nv8iym7t3TphrUb-6kaEzwhdYGuwp2gfyDErUuY6WpMHVik8wgDtnQ7NVCgj8F1MfV0Eb2PW7pao_e02dHrIfbO0iXsMNEb3MTsBhfDKTnswGc82-sJefz182G-mC3vbn_Pr5czkKwcZqA56soyLFjDKolcVU2p0RZGNB0oKStAhbrVErpWlFi0UrZKV0oaaXVXyhPy_b_vJsWXEfNQ9y7baTYIGMdcczWZcMOVmNCLPTo2Pbb1Jrke0q5-v9wEXO4ByBZ8lyBYlz-5SpeqUOaTA5vr5zimMG1Yc1a_fa7--Jx8BZsiiE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553319152</pqid></control><display><type>article</type><title>Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Guan, Cao ; Wang, Xinghui ; Zhang, Qing ; Fan, Zhanxi ; Zhang, Hua ; Fan, Hong Jin</creator><creatorcontrib>Guan, Cao ; Wang, Xinghui ; Zhang, Qing ; Fan, Zhanxi ; Zhang, Hua ; Fan, Hong Jin</creatorcontrib><description>SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanostructure. This structure has radically improved rate capability and cycling stability compared to both bare SnO2 nanowires and solid SnO2@TiO2 core–shell nanowire electrodes. Typically a relatively stable capacity of 393.3 mAh/g has been achieved after 1000 charge–discharge cycles at a current density of 400 mA/g, and 241.2 mAh/g at 3200 mA/g. It is believed that the uniform hollow TiO2 shell provides stable surface protection and the appropriate-sized gap effectively accommodates the expansion of the interior SnO2 nanowire. This ALD-enabled method should be general to many other battery anode and cathode materials, providing a new and highly reproducible and controllable technique for improving battery performance.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl502192p</identifier><identifier>PMID: 25057923</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires</subject><ispartof>Nano letters, 2014-08, Vol.14 (8), p.4852-4858</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28765459$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25057923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Cao</creatorcontrib><creatorcontrib>Wang, Xinghui</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Fan, Zhanxi</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Fan, Hong Jin</creatorcontrib><title>Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanostructure. This structure has radically improved rate capability and cycling stability compared to both bare SnO2 nanowires and solid SnO2@TiO2 core–shell nanowire electrodes. Typically a relatively stable capacity of 393.3 mAh/g has been achieved after 1000 charge–discharge cycles at a current density of 400 mA/g, and 241.2 mAh/g at 3200 mA/g. It is believed that the uniform hollow TiO2 shell provides stable surface protection and the appropriate-sized gap effectively accommodates the expansion of the interior SnO2 nanowire. This ALD-enabled method should be general to many other battery anode and cathode materials, providing a new and highly reproducible and controllable technique for improving battery performance.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkU1P3DAQhq0KVChw4A8gX5B62eKPOI6PaGnZSqsisXCOJs6ENXLsxU662nt_OEFd4PTOaJ55NR-EnHP2gzPBr4JXkxix-UKOuZJsVhojDj7iqjgi33J-ZowZqdhXciQUU9oIeUz-LdzT2u_oaoDGI4XQ0nv8iym7t3TphrUb-6kaEzwhdYGuwp2gfyDErUuY6WpMHVik8wgDtnQ7NVCgj8F1MfV0Eb2PW7pao_e02dHrIfbO0iXsMNEb3MTsBhfDKTnswGc82-sJefz182G-mC3vbn_Pr5czkKwcZqA56soyLFjDKolcVU2p0RZGNB0oKStAhbrVErpWlFi0UrZKV0oaaXVXyhPy_b_vJsWXEfNQ9y7baTYIGMdcczWZcMOVmNCLPTo2Pbb1Jrke0q5-v9wEXO4ByBZ8lyBYlz-5SpeqUOaTA5vr5zimMG1Yc1a_fa7--Jx8BZsiiE0</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Guan, Cao</creator><creator>Wang, Xinghui</creator><creator>Zhang, Qing</creator><creator>Fan, Zhanxi</creator><creator>Zhang, Hua</creator><creator>Fan, Hong Jin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140813</creationdate><title>Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition</title><author>Guan, Cao ; Wang, Xinghui ; Zhang, Qing ; Fan, Zhanxi ; Zhang, Hua ; Fan, Hong Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a306t-a71e78c0e40b083e158b67ec492bfa5338ae5e7d73afd26e4d33d5785393c7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Cao</creatorcontrib><creatorcontrib>Wang, Xinghui</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Fan, Zhanxi</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Fan, Hong Jin</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Cao</au><au>Wang, Xinghui</au><au>Zhang, Qing</au><au>Fan, Zhanxi</au><au>Zhang, Hua</au><au>Fan, Hong Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>14</volume><issue>8</issue><spage>4852</spage><epage>4858</epage><pages>4852-4858</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>SnO2 nanowires directly grown on flexible substrates can be a good electrode for a lithium ion battery. However, Sn-based (metal Sn or SnO2) anode materials always suffer from poor stability due to a large volume expansion during cycling. In this work, we utilize atomic layer deposition (ALD) to surface engineer SnO2 nanowires, resulting in a new type of hollowed SnO2-in-TiO2 wire-in-tube nanostructure. This structure has radically improved rate capability and cycling stability compared to both bare SnO2 nanowires and solid SnO2@TiO2 core–shell nanowire electrodes. Typically a relatively stable capacity of 393.3 mAh/g has been achieved after 1000 charge–discharge cycles at a current density of 400 mA/g, and 241.2 mAh/g at 3200 mA/g. It is believed that the uniform hollow TiO2 shell provides stable surface protection and the appropriate-sized gap effectively accommodates the expansion of the interior SnO2 nanowire. This ALD-enabled method should be general to many other battery anode and cathode materials, providing a new and highly reproducible and controllable technique for improving battery performance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25057923</pmid><doi>10.1021/nl502192p</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-08, Vol.14 (8), p.4852-4858
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1553319152
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum wires
title Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stable%20and%20Reversible%20Lithium%20Storage%20in%20SnO2%20Nanowires%20Surface%20Coated%20with%20a%20Uniform%20Hollow%20Shell%20by%20Atomic%20Layer%20Deposition&rft.jtitle=Nano%20letters&rft.au=Guan,%20Cao&rft.date=2014-08-13&rft.volume=14&rft.issue=8&rft.spage=4852&rft.epage=4858&rft.pages=4852-4858&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl502192p&rft_dat=%3Cproquest_pubme%3E1553319152%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a306t-a71e78c0e40b083e158b67ec492bfa5338ae5e7d73afd26e4d33d5785393c7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553319152&rft_id=info:pmid/25057923&rfr_iscdi=true