Loading…

Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function

One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread fun...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2014-08, Vol.14 (8), p.4406-4412
Main Authors: Manfrinato, Vitor R, Wen, Jianguo, Zhang, Lihua, Yang, Yujia, Hobbs, Richard G, Baker, Bowen, Su, Dong, Zakharov, Dmitri, Zaluzec, Nestor J, Miller, Dean J, Stach, Eric A, Berggren, Karl K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3
cites cdi_FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3
container_end_page 4412
container_issue 8
container_start_page 4406
container_title Nano letters
container_volume 14
creator Manfrinato, Vitor R
Wen, Jianguo
Zhang, Lihua
Yang, Yujia
Hobbs, Richard G
Baker, Bowen
Su, Dong
Zakharov, Dmitri
Zaluzec, Nestor J
Miller, Dean J
Stach, Eric A
Berggren, Karl K
description One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.
doi_str_mv 10.1021/nl5013773
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1553325539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553325539</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3</originalsourceid><addsrcrecordid>eNptkE1P3DAQhi1UVCjtgT9Q5VKJHgLj-CNxby0fBWlRER_naDY7Zo0Se7GdA_-erFiWSy8ea-aZZ6SXsUMOxxwqfuJ7BVzUtdhh-1wJKLUx1aftv5F77EtKTwBghILPbK-SRoMWap-FM8oUB-edfyzykopbSqEfswu-mLnB5VQEW5z31OUYfPmHcJj6eRkeI66WL7-KMxenWXFNmMZIA_m8XlibboLzubxbRcJFcTH6bi39ynYt9om-beoBe7g4vz-9LGf__l6d_p6VKMHk0mo51zBvTFU3jUVpxJzLGhEN2IWuAaTtKklYm9oYVFoDVVLpRiI0ynISB-zozbuK4XmklNvBpY76Hj2FMbVcKSGq6TET-vMN7WJIKZJtV9ENGF9aDu0633ab78R-32jH-UCLLfke6AT82ACYOuxtRN-59ME1tVaiMR8cdql9CmP0Uxr_OfgK38CN1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553325539</pqid></control><display><type>article</type><title>Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Manfrinato, Vitor R ; Wen, Jianguo ; Zhang, Lihua ; Yang, Yujia ; Hobbs, Richard G ; Baker, Bowen ; Su, Dong ; Zakharov, Dmitri ; Zaluzec, Nestor J ; Miller, Dean J ; Stach, Eric A ; Berggren, Karl K</creator><creatorcontrib>Manfrinato, Vitor R ; Wen, Jianguo ; Zhang, Lihua ; Yang, Yujia ; Hobbs, Richard G ; Baker, Bowen ; Su, Dong ; Zakharov, Dmitri ; Zaluzec, Nestor J ; Miller, Dean J ; Stach, Eric A ; Berggren, Karl K</creatorcontrib><description>One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl5013773</identifier><identifier>PMID: 24960635</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Lattice dynamics ; Materials science ; Methods of nanofabrication ; Nanolithography ; Phonons in low-dimensional structures and small particles ; Physics ; Surface and interface electron states</subject><ispartof>Nano letters, 2014-08, Vol.14 (8), p.4406-4412</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3</citedby><cites>FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28765389$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24960635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manfrinato, Vitor R</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Yang, Yujia</creatorcontrib><creatorcontrib>Hobbs, Richard G</creatorcontrib><creatorcontrib>Baker, Bowen</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Zakharov, Dmitri</creatorcontrib><creatorcontrib>Zaluzec, Nestor J</creatorcontrib><creatorcontrib>Miller, Dean J</creatorcontrib><creatorcontrib>Stach, Eric A</creatorcontrib><creatorcontrib>Berggren, Karl K</creatorcontrib><title>Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Lattice dynamics</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanolithography</subject><subject>Phonons in low-dimensional structures and small particles</subject><subject>Physics</subject><subject>Surface and interface electron states</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkE1P3DAQhi1UVCjtgT9Q5VKJHgLj-CNxby0fBWlRER_naDY7Zo0Se7GdA_-erFiWSy8ea-aZZ6SXsUMOxxwqfuJ7BVzUtdhh-1wJKLUx1aftv5F77EtKTwBghILPbK-SRoMWap-FM8oUB-edfyzykopbSqEfswu-mLnB5VQEW5z31OUYfPmHcJj6eRkeI66WL7-KMxenWXFNmMZIA_m8XlibboLzubxbRcJFcTH6bi39ynYt9om-beoBe7g4vz-9LGf__l6d_p6VKMHk0mo51zBvTFU3jUVpxJzLGhEN2IWuAaTtKklYm9oYVFoDVVLpRiI0ynISB-zozbuK4XmklNvBpY76Hj2FMbVcKSGq6TET-vMN7WJIKZJtV9ENGF9aDu0633ab78R-32jH-UCLLfke6AT82ACYOuxtRN-59ME1tVaiMR8cdql9CmP0Uxr_OfgK38CN1A</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Manfrinato, Vitor R</creator><creator>Wen, Jianguo</creator><creator>Zhang, Lihua</creator><creator>Yang, Yujia</creator><creator>Hobbs, Richard G</creator><creator>Baker, Bowen</creator><creator>Su, Dong</creator><creator>Zakharov, Dmitri</creator><creator>Zaluzec, Nestor J</creator><creator>Miller, Dean J</creator><creator>Stach, Eric A</creator><creator>Berggren, Karl K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140813</creationdate><title>Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function</title><author>Manfrinato, Vitor R ; Wen, Jianguo ; Zhang, Lihua ; Yang, Yujia ; Hobbs, Richard G ; Baker, Bowen ; Su, Dong ; Zakharov, Dmitri ; Zaluzec, Nestor J ; Miller, Dean J ; Stach, Eric A ; Berggren, Karl K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Lattice dynamics</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanolithography</topic><topic>Phonons in low-dimensional structures and small particles</topic><topic>Physics</topic><topic>Surface and interface electron states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manfrinato, Vitor R</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Yang, Yujia</creatorcontrib><creatorcontrib>Hobbs, Richard G</creatorcontrib><creatorcontrib>Baker, Bowen</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Zakharov, Dmitri</creatorcontrib><creatorcontrib>Zaluzec, Nestor J</creatorcontrib><creatorcontrib>Miller, Dean J</creatorcontrib><creatorcontrib>Stach, Eric A</creatorcontrib><creatorcontrib>Berggren, Karl K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manfrinato, Vitor R</au><au>Wen, Jianguo</au><au>Zhang, Lihua</au><au>Yang, Yujia</au><au>Hobbs, Richard G</au><au>Baker, Bowen</au><au>Su, Dong</au><au>Zakharov, Dmitri</au><au>Zaluzec, Nestor J</au><au>Miller, Dean J</au><au>Stach, Eric A</au><au>Berggren, Karl K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>14</volume><issue>8</issue><spage>4406</spage><epage>4412</epage><pages>4406-4412</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24960635</pmid><doi>10.1021/nl5013773</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-08, Vol.14 (8), p.4406-4412
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1553325539
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Lattice dynamics
Materials science
Methods of nanofabrication
Nanolithography
Phonons in low-dimensional structures and small particles
Physics
Surface and interface electron states
title Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20Resolution%20Limits%20of%20Electron-Beam%20Lithography:%20Direct%20Measurement%20of%20the%20Point-Spread%20Function&rft.jtitle=Nano%20letters&rft.au=Manfrinato,%20Vitor%20R&rft.date=2014-08-13&rft.volume=14&rft.issue=8&rft.spage=4406&rft.epage=4412&rft.pages=4406-4412&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl5013773&rft_dat=%3Cproquest_cross%3E1553325539%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a409t-f64b60b892788fa493b147aaa90fd67004fc24ea79799a5660e245684a085f1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553325539&rft_id=info:pmid/24960635&rfr_iscdi=true