Loading…

Role of Inflammation and the Angiotensin Type 2 Receptor in the Regulation of Arterial Pressure During Pregnancy in Mice

During normal pregnancy the renin-angiotensin system is activated, yet pregnant women are resistant to the pressor effects of angiotensin II. Our aim was to determine the role of the angiotensin type 2 receptor (AT2R) in the regulation of arterial pressure, natriuresis, and immune cell infiltration...

Full description

Saved in:
Bibliographic Details
Published in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2014-09, Vol.64 (3), p.626-631
Main Authors: MIRABITO, Katrina M, HILLIARD, Lucinda M, ZIHUI WEI, TIKELLIS, Chris, WIDDOP, Robert E, VINH, Antony, DENTON, Kate M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During normal pregnancy the renin-angiotensin system is activated, yet pregnant women are resistant to the pressor effects of angiotensin II. Our aim was to determine the role of the angiotensin type 2 receptor (AT2R) in the regulation of arterial pressure, natriuresis, and immune cell infiltration during pregnancy. Mean arterial pressure was measured via telemetry, and flow cytometry was used to enumerate immune cell infiltration in 14-week-old wild-type and AT2R knockout mice during gestation. In wild-type mice, mean arterial pressure decreased during gestation, reaching a nadir at gestational day 9 (-6±2 mm Hg) and returned to near preconception levels during late gestation. In AT2R-deficient mice, the midgestational decrease in mean arterial pressure was absent. Furthermore, mean arterial pressure was significantly increased during late gestation compared with wild-type mice (≈10 mm Hg). As expected, circulating immune cell activation was suppressed during pregnancy. However, this response was absent in AT2R-deficient mice. While renal immune cell infiltration was similar between the genotypes, there was a significant T cell phenotypic switch toward a proinflammatory T-helper 1 phenotype in AT2R-deficient mice. These data indicate that the AT2R plays an important role in arterial pressure regulation and may modulate T cell activation and renal cytokine production during pregnancy. Therefore, deficits in AT2R expression may contribute to pregnancy-induced hypertension and thus represents a potential therapeutic target.
ISSN:0194-911X
1524-4563
DOI:10.1161/HYPERTENSIONAHA.114.03189