Loading…
Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong
Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical m...
Saved in:
Published in: | Water (Basel) 2014-03, Vol.6 (3), p.642-660 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583 |
container_end_page | 660 |
container_issue | 3 |
container_start_page | 642 |
container_title | Water (Basel) |
container_volume | 6 |
creator | Zhang, Peng Wai, Onyx WH Chen, Xiaoling Lu, Jianzhong Tian, Liqiao |
description | Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation. |
doi_str_mv | 10.3390/w6030642 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554951560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3340915201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</originalsourceid><addsrcrecordid>eNpdkFtLAzEQhYMoWGrBnxDwxZfVXHezj7WoLVYUrM9LNjtbUnY3NUmV_nvjDcV5mBmGj8OZg9ApJRecl-TyLSec5IIdoBEjBc-EEPTwz36MJiFsSCpRKiXJCG0W_da7Vzus8RM0toch4pXXQ9g6H_GjTzcTrRtwvcfTEGxvOx0_aR2h62wEvOj1GgK2A9Z4ZRvd4Su9x_eugQ67Fs9dou9SO0FHre4CTL7nGD3fXK9m82z5cLuYTZeZ4YzFrKWFLo0RRcHqltSGEyA5aVlTc8OA6oa2vJYaOJUla1ihC1VIlgOvcwq1VHyMzr9002MvOwix6m0wyawewO1CRaUUpaQyZTVGZ__Qjdv5IblLFFdECUXyX0HjXQge2mrrba_9vqKk-si9-smdvwMCb3Pc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1538084806</pqid></control><display><type>article</type><title>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</title><source>IngentaConnect Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Zhang, Peng ; Wai, Onyx WH ; Chen, Xiaoling ; Lu, Jianzhong ; Tian, Liqiao</creator><creatorcontrib>Zhang, Peng ; Wai, Onyx WH ; Chen, Xiaoling ; Lu, Jianzhong ; Tian, Liqiao</creatorcontrib><description>Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w6030642</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Data assimilation ; Environmental impact ; Heavy metals ; Quality management ; Remote sensing ; Sediment transport ; Water quality</subject><ispartof>Water (Basel), 2014-03, Vol.6 (3), p.642-660</ispartof><rights>Copyright MDPI AG 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</citedby><cites>FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</cites><orcidid>0000-0002-6432-8481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1538084806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1538084806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wai, Onyx WH</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Lu, Jianzhong</creatorcontrib><creatorcontrib>Tian, Liqiao</creatorcontrib><title>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</title><title>Water (Basel)</title><description>Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.</description><subject>Data assimilation</subject><subject>Environmental impact</subject><subject>Heavy metals</subject><subject>Quality management</subject><subject>Remote sensing</subject><subject>Sediment transport</subject><subject>Water quality</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkFtLAzEQhYMoWGrBnxDwxZfVXHezj7WoLVYUrM9LNjtbUnY3NUmV_nvjDcV5mBmGj8OZg9ApJRecl-TyLSec5IIdoBEjBc-EEPTwz36MJiFsSCpRKiXJCG0W_da7Vzus8RM0toch4pXXQ9g6H_GjTzcTrRtwvcfTEGxvOx0_aR2h62wEvOj1GgK2A9Z4ZRvd4Su9x_eugQ67Fs9dou9SO0FHre4CTL7nGD3fXK9m82z5cLuYTZeZ4YzFrKWFLo0RRcHqltSGEyA5aVlTc8OA6oa2vJYaOJUla1ihC1VIlgOvcwq1VHyMzr9002MvOwix6m0wyawewO1CRaUUpaQyZTVGZ__Qjdv5IblLFFdECUXyX0HjXQge2mrrba_9vqKk-si9-smdvwMCb3Pc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zhang, Peng</creator><creator>Wai, Onyx WH</creator><creator>Chen, Xiaoling</creator><creator>Lu, Jianzhong</creator><creator>Tian, Liqiao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6432-8481</orcidid></search><sort><creationdate>20140301</creationdate><title>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</title><author>Zhang, Peng ; Wai, Onyx WH ; Chen, Xiaoling ; Lu, Jianzhong ; Tian, Liqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data assimilation</topic><topic>Environmental impact</topic><topic>Heavy metals</topic><topic>Quality management</topic><topic>Remote sensing</topic><topic>Sediment transport</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wai, Onyx WH</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Lu, Jianzhong</creatorcontrib><creatorcontrib>Tian, Liqiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng</au><au>Wai, Onyx WH</au><au>Chen, Xiaoling</au><au>Lu, Jianzhong</au><au>Tian, Liqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</atitle><jtitle>Water (Basel)</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>6</volume><issue>3</issue><spage>642</spage><epage>660</epage><pages>642-660</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w6030642</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6432-8481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2014-03, Vol.6 (3), p.642-660 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_miscellaneous_1554951560 |
source | IngentaConnect Journals; ProQuest - Publicly Available Content Database |
subjects | Data assimilation Environmental impact Heavy metals Quality management Remote sensing Sediment transport Water quality |
title | Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Sediment%20Transport%20Prediction%20by%20Assimilating%20Satellite%20Images%20in%20a%20Tidal%20Bay%20Model%20of%20Hong%20Kong&rft.jtitle=Water%20(Basel)&rft.au=Zhang,%20Peng&rft.date=2014-03-01&rft.volume=6&rft.issue=3&rft.spage=642&rft.epage=660&rft.pages=642-660&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w6030642&rft_dat=%3Cproquest_cross%3E3340915201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1538084806&rft_id=info:pmid/&rfr_iscdi=true |