Loading…

Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical m...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2014-03, Vol.6 (3), p.642-660
Main Authors: Zhang, Peng, Wai, Onyx WH, Chen, Xiaoling, Lu, Jianzhong, Tian, Liqiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583
cites cdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583
container_end_page 660
container_issue 3
container_start_page 642
container_title Water (Basel)
container_volume 6
creator Zhang, Peng
Wai, Onyx WH
Chen, Xiaoling
Lu, Jianzhong
Tian, Liqiao
description Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.
doi_str_mv 10.3390/w6030642
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1554951560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3340915201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</originalsourceid><addsrcrecordid>eNpdkFtLAzEQhYMoWGrBnxDwxZfVXHezj7WoLVYUrM9LNjtbUnY3NUmV_nvjDcV5mBmGj8OZg9ApJRecl-TyLSec5IIdoBEjBc-EEPTwz36MJiFsSCpRKiXJCG0W_da7Vzus8RM0toch4pXXQ9g6H_GjTzcTrRtwvcfTEGxvOx0_aR2h62wEvOj1GgK2A9Z4ZRvd4Su9x_eugQ67Fs9dou9SO0FHre4CTL7nGD3fXK9m82z5cLuYTZeZ4YzFrKWFLo0RRcHqltSGEyA5aVlTc8OA6oa2vJYaOJUla1ihC1VIlgOvcwq1VHyMzr9002MvOwix6m0wyawewO1CRaUUpaQyZTVGZ__Qjdv5IblLFFdECUXyX0HjXQge2mrrba_9vqKk-si9-smdvwMCb3Pc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1538084806</pqid></control><display><type>article</type><title>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</title><source>IngentaConnect Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Zhang, Peng ; Wai, Onyx WH ; Chen, Xiaoling ; Lu, Jianzhong ; Tian, Liqiao</creator><creatorcontrib>Zhang, Peng ; Wai, Onyx WH ; Chen, Xiaoling ; Lu, Jianzhong ; Tian, Liqiao</creatorcontrib><description>Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w6030642</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Data assimilation ; Environmental impact ; Heavy metals ; Quality management ; Remote sensing ; Sediment transport ; Water quality</subject><ispartof>Water (Basel), 2014-03, Vol.6 (3), p.642-660</ispartof><rights>Copyright MDPI AG 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</citedby><cites>FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</cites><orcidid>0000-0002-6432-8481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1538084806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1538084806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wai, Onyx WH</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Lu, Jianzhong</creatorcontrib><creatorcontrib>Tian, Liqiao</creatorcontrib><title>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</title><title>Water (Basel)</title><description>Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.</description><subject>Data assimilation</subject><subject>Environmental impact</subject><subject>Heavy metals</subject><subject>Quality management</subject><subject>Remote sensing</subject><subject>Sediment transport</subject><subject>Water quality</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkFtLAzEQhYMoWGrBnxDwxZfVXHezj7WoLVYUrM9LNjtbUnY3NUmV_nvjDcV5mBmGj8OZg9ApJRecl-TyLSec5IIdoBEjBc-EEPTwz36MJiFsSCpRKiXJCG0W_da7Vzus8RM0toch4pXXQ9g6H_GjTzcTrRtwvcfTEGxvOx0_aR2h62wEvOj1GgK2A9Z4ZRvd4Su9x_eugQ67Fs9dou9SO0FHre4CTL7nGD3fXK9m82z5cLuYTZeZ4YzFrKWFLo0RRcHqltSGEyA5aVlTc8OA6oa2vJYaOJUla1ihC1VIlgOvcwq1VHyMzr9002MvOwix6m0wyawewO1CRaUUpaQyZTVGZ__Qjdv5IblLFFdECUXyX0HjXQge2mrrba_9vqKk-si9-smdvwMCb3Pc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zhang, Peng</creator><creator>Wai, Onyx WH</creator><creator>Chen, Xiaoling</creator><creator>Lu, Jianzhong</creator><creator>Tian, Liqiao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6432-8481</orcidid></search><sort><creationdate>20140301</creationdate><title>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</title><author>Zhang, Peng ; Wai, Onyx WH ; Chen, Xiaoling ; Lu, Jianzhong ; Tian, Liqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data assimilation</topic><topic>Environmental impact</topic><topic>Heavy metals</topic><topic>Quality management</topic><topic>Remote sensing</topic><topic>Sediment transport</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wai, Onyx WH</creatorcontrib><creatorcontrib>Chen, Xiaoling</creatorcontrib><creatorcontrib>Lu, Jianzhong</creatorcontrib><creatorcontrib>Tian, Liqiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng</au><au>Wai, Onyx WH</au><au>Chen, Xiaoling</au><au>Lu, Jianzhong</au><au>Tian, Liqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong</atitle><jtitle>Water (Basel)</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>6</volume><issue>3</issue><spage>642</spage><epage>660</epage><pages>642-660</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w6030642</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6432-8481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2014-03, Vol.6 (3), p.642-660
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_miscellaneous_1554951560
source IngentaConnect Journals; ProQuest - Publicly Available Content Database
subjects Data assimilation
Environmental impact
Heavy metals
Quality management
Remote sensing
Sediment transport
Water quality
title Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Sediment%20Transport%20Prediction%20by%20Assimilating%20Satellite%20Images%20in%20a%20Tidal%20Bay%20Model%20of%20Hong%20Kong&rft.jtitle=Water%20(Basel)&rft.au=Zhang,%20Peng&rft.date=2014-03-01&rft.volume=6&rft.issue=3&rft.spage=642&rft.epage=660&rft.pages=642-660&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w6030642&rft_dat=%3Cproquest_cross%3E3340915201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-f17a9cc4772bf0bc30e060f2db3c2e1ad1f3b5ae31592d27a787526e3b61eb583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1538084806&rft_id=info:pmid/&rfr_iscdi=true