Loading…

The SF1 helicase encoded by the archaeal plasmid pTN2 of Thermococcus nautili

We expressed, purified, and characterized the helicase encoded by ORF1 of the Thermococcus nautili pTN2 plasmid (Soler et al. Nucl Acids Res 38, 5088–5104, 2010 ). The enzyme, which belongs to the SF1 family of helicases, possesses NTPase activity, with a strong preference for ATP and GTP as compare...

Full description

Saved in:
Bibliographic Details
Published in:Extremophiles : life under extreme conditions 2014-07, Vol.18 (4), p.779-787
Main Authors: Béguin, Pierre, Baron, Bruno, Gill, Sukhvinder, Charpin, Nicole, Forterre, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We expressed, purified, and characterized the helicase encoded by ORF1 of the Thermococcus nautili pTN2 plasmid (Soler et al. Nucl Acids Res 38, 5088–5104, 2010 ). The enzyme, which belongs to the SF1 family of helicases, possesses NTPase activity, with a strong preference for ATP and GTP as compared to CTP and TTP; dATP was also a substrate. Triphosphatase activity was strongly stimulated by single-stranded DNA and, to a lesser extent, by double-stranded DNA. Unwinding of duplexes comprising a fluorescent oligonucleotide was monitored by fluorescence polarization spectroscopy and by polyacrylamide gel electrophoresis. As observed for enzymes of the same family, pTN2 helicase displays a strong preference for duplexes comprising a 3′ single-stranded extension and proceeds from the 3′ to the 5′ end of the loading strand. Under the conditions of the in vitro assay, pTN2 helicase did not appear to be recycled, but stayed bound to single-stranded DNA, which explains why high concentrations of enzyme are required to unwind long stretches of duplex DNA. The helicase enhances the synthesis of double-stranded DNA by pTN2 primase and by T. nautili PolB polymerase primed by pTN2 primase but it did not enhance synthesis by Taq DNA polymerase.
ISSN:1431-0651
1433-4909
DOI:10.1007/s00792-014-0658-5