Loading…
Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking
Abstract We propose a wearable hybrid interface where eye movements and mental concentration directly influence the control of a quadcopter in three-dimensional space. This noninvasive and low-cost interface addresses limitations of previous work by supporting users to complete their complicated tas...
Saved in:
Published in: | Computers in biology and medicine 2014-08, Vol.51, p.82-92 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We propose a wearable hybrid interface where eye movements and mental concentration directly influence the control of a quadcopter in three-dimensional space. This noninvasive and low-cost interface addresses limitations of previous work by supporting users to complete their complicated tasks in a constrained environment in which only visual feedback is provided. The combination of the two inputs augments the number of control commands to enable the flying robot to travel in eight different directions within the physical environment. Five human subjects participated in the experiments to test the feasibility of the hybrid interface. A front view camera on the hull of the quadcopter provided the only visual feedback to each remote subject on a laptop display. Based on the visual feedback, the subjects used the interface to navigate along pre-set target locations in the air. The flight performance was evaluated by comparing with a keyboard-based interface. We demonstrate the applicability of the hybrid interface to explore and interact with a three-dimensional physical space through a flying robot. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2014.04.020 |