Loading…

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bi...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2014-09, Vol.13 (9), p.897-903
Main Authors: Jeon, Nam Joong, Noh, Jun Hong, Kim, Young Chan, Yang, Woon Seok, Ryu, Seungchan, Seok, Sang Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83
cites cdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83
container_end_page 903
container_issue 9
container_start_page 897
container_title Nature materials
container_volume 13
creator Jeon, Nam Joong
Noh, Jun Hong
Kim, Young Chan
Yang, Woon Seok
Ryu, Seungchan
Seok, Sang Il
description Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH 3 NH 3 Pb(I 1  −  x Br x ) 3 ( x = 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH 3 NH 3 I–PbI 2 –DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells. The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.
doi_str_mv 10.1038/nmat4014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555626797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1555626797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</originalsourceid><addsrcrecordid>eNpdkE1OwzAQRi0EoqUgcQIUiQ0sArbj2MkSVfxJlVgAGzaR40xSl8QudlqpO-7ADTkJidqiqqv5Fk9vZj6Ezgm-IThKbk0jW4YJO0BDwgQPGef4cJMJoXSATryfYUxJHPNjNKAsTYVgeIg-Xm29BNMGYCptAJw2VVBaF0x1NQ3n4LrcSKMg0Ma6Shqtfr9_NimYrnKni6DD7NJ_6hYCb2vpAgV17U_RUSlrD2ebOULvD_dv46dw8vL4PL6bhIpR0oaE5QUDEgtBQKk8BlxECY5LmZZUpSSNZIqLuKRAE0VknijGIS9UmWAaE6GSaISu1t65s18L8G3WaN9fIA3Yhc-6n2NOuUhFh17uoTO7cKa7rqcEj2jEd4TKWe8dlNnc6Ua6VUZw1vedbfvu0IuNcJE3UPyD24I74HoN-HlfLbidjfuyP8Zwi2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557632368</pqid></control><display><type>article</type><title>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</title><source>Nature</source><creator>Jeon, Nam Joong ; Noh, Jun Hong ; Kim, Young Chan ; Yang, Woon Seok ; Ryu, Seungchan ; Seok, Sang Il</creator><creatorcontrib>Jeon, Nam Joong ; Noh, Jun Hong ; Kim, Young Chan ; Yang, Woon Seok ; Ryu, Seungchan ; Seok, Sang Il</creatorcontrib><description>Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH 3 NH 3 Pb(I 1  −  x Br x ) 3 ( x = 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH 3 NH 3 I–PbI 2 –DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells. The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4014</identifier><identifier>PMID: 24997740</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/301/357/551 ; 639/624 ; Ammonia ; Biomaterials ; Cells ; Condensed Matter Physics ; Fabrication ; Inorganic chemistry ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Organic chemicals ; Perovskite ; Photovoltaics ; Solar cells ; Solar energy ; Solvents ; Toluene</subject><ispartof>Nature materials, 2014-09, Vol.13 (9), p.897-903</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</citedby><cites>FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24997740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Noh, Jun Hong</creatorcontrib><creatorcontrib>Kim, Young Chan</creatorcontrib><creatorcontrib>Yang, Woon Seok</creatorcontrib><creatorcontrib>Ryu, Seungchan</creatorcontrib><creatorcontrib>Seok, Sang Il</creatorcontrib><title>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH 3 NH 3 Pb(I 1  −  x Br x ) 3 ( x = 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH 3 NH 3 I–PbI 2 –DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells. The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.</description><subject>639/301/299/946</subject><subject>639/301/357/551</subject><subject>639/624</subject><subject>Ammonia</subject><subject>Biomaterials</subject><subject>Cells</subject><subject>Condensed Matter Physics</subject><subject>Fabrication</subject><subject>Inorganic chemistry</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemicals</subject><subject>Perovskite</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solvents</subject><subject>Toluene</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQRi0EoqUgcQIUiQ0sArbj2MkSVfxJlVgAGzaR40xSl8QudlqpO-7ADTkJidqiqqv5Fk9vZj6Ezgm-IThKbk0jW4YJO0BDwgQPGef4cJMJoXSATryfYUxJHPNjNKAsTYVgeIg-Xm29BNMGYCptAJw2VVBaF0x1NQ3n4LrcSKMg0Ma6Shqtfr9_NimYrnKni6DD7NJ_6hYCb2vpAgV17U_RUSlrD2ebOULvD_dv46dw8vL4PL6bhIpR0oaE5QUDEgtBQKk8BlxECY5LmZZUpSSNZIqLuKRAE0VknijGIS9UmWAaE6GSaISu1t65s18L8G3WaN9fIA3Yhc-6n2NOuUhFh17uoTO7cKa7rqcEj2jEd4TKWe8dlNnc6Ua6VUZw1vedbfvu0IuNcJE3UPyD24I74HoN-HlfLbidjfuyP8Zwi2I</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Jeon, Nam Joong</creator><creator>Noh, Jun Hong</creator><creator>Kim, Young Chan</creator><creator>Yang, Woon Seok</creator><creator>Ryu, Seungchan</creator><creator>Seok, Sang Il</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</title><author>Jeon, Nam Joong ; Noh, Jun Hong ; Kim, Young Chan ; Yang, Woon Seok ; Ryu, Seungchan ; Seok, Sang Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/299/946</topic><topic>639/301/357/551</topic><topic>639/624</topic><topic>Ammonia</topic><topic>Biomaterials</topic><topic>Cells</topic><topic>Condensed Matter Physics</topic><topic>Fabrication</topic><topic>Inorganic chemistry</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemicals</topic><topic>Perovskite</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solvents</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Noh, Jun Hong</creatorcontrib><creatorcontrib>Kim, Young Chan</creatorcontrib><creatorcontrib>Yang, Woon Seok</creatorcontrib><creatorcontrib>Ryu, Seungchan</creatorcontrib><creatorcontrib>Seok, Sang Il</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Nam Joong</au><au>Noh, Jun Hong</au><au>Kim, Young Chan</au><au>Yang, Woon Seok</au><au>Ryu, Seungchan</au><au>Seok, Sang Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>13</volume><issue>9</issue><spage>897</spage><epage>903</epage><pages>897-903</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH 3 NH 3 Pb(I 1  −  x Br x ) 3 ( x = 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH 3 NH 3 I–PbI 2 –DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells. The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24997740</pmid><doi>10.1038/nmat4014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2014-09, Vol.13 (9), p.897-903
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1555626797
source Nature
subjects 639/301/299/946
639/301/357/551
639/624
Ammonia
Biomaterials
Cells
Condensed Matter Physics
Fabrication
Inorganic chemistry
Materials Science
Nanotechnology
Optical and Electronic Materials
Organic chemicals
Perovskite
Photovoltaics
Solar cells
Solar energy
Solvents
Toluene
title Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20engineering%20for%20high-performance%20inorganic%E2%80%93organic%20hybrid%20perovskite%20solar%20cells&rft.jtitle=Nature%20materials&rft.au=Jeon,%20Nam%20Joong&rft.date=2014-09-01&rft.volume=13&rft.issue=9&rft.spage=897&rft.epage=903&rft.pages=897-903&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4014&rft_dat=%3Cproquest_cross%3E1555626797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1557632368&rft_id=info:pmid/24997740&rfr_iscdi=true