Loading…
Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bi...
Saved in:
Published in: | Nature materials 2014-09, Vol.13 (9), p.897-903 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83 |
container_end_page | 903 |
container_issue | 9 |
container_start_page | 897 |
container_title | Nature materials |
container_volume | 13 |
creator | Jeon, Nam Joong Noh, Jun Hong Kim, Young Chan Yang, Woon Seok Ryu, Seungchan Seok, Sang Il |
description | Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH
3
NH
3
Pb(I
1
−
x
Br
x
)
3
(
x
= 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH
3
NH
3
I–PbI
2
–DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis. |
doi_str_mv | 10.1038/nmat4014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555626797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1555626797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</originalsourceid><addsrcrecordid>eNpdkE1OwzAQRi0EoqUgcQIUiQ0sArbj2MkSVfxJlVgAGzaR40xSl8QudlqpO-7ADTkJidqiqqv5Fk9vZj6Ezgm-IThKbk0jW4YJO0BDwgQPGef4cJMJoXSATryfYUxJHPNjNKAsTYVgeIg-Xm29BNMGYCptAJw2VVBaF0x1NQ3n4LrcSKMg0Ma6Shqtfr9_NimYrnKni6DD7NJ_6hYCb2vpAgV17U_RUSlrD2ebOULvD_dv46dw8vL4PL6bhIpR0oaE5QUDEgtBQKk8BlxECY5LmZZUpSSNZIqLuKRAE0VknijGIS9UmWAaE6GSaISu1t65s18L8G3WaN9fIA3Yhc-6n2NOuUhFh17uoTO7cKa7rqcEj2jEd4TKWe8dlNnc6Ua6VUZw1vedbfvu0IuNcJE3UPyD24I74HoN-HlfLbidjfuyP8Zwi2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557632368</pqid></control><display><type>article</type><title>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</title><source>Nature</source><creator>Jeon, Nam Joong ; Noh, Jun Hong ; Kim, Young Chan ; Yang, Woon Seok ; Ryu, Seungchan ; Seok, Sang Il</creator><creatorcontrib>Jeon, Nam Joong ; Noh, Jun Hong ; Kim, Young Chan ; Yang, Woon Seok ; Ryu, Seungchan ; Seok, Sang Il</creatorcontrib><description>Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH
3
NH
3
Pb(I
1
−
x
Br
x
)
3
(
x
= 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH
3
NH
3
I–PbI
2
–DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4014</identifier><identifier>PMID: 24997740</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/301/357/551 ; 639/624 ; Ammonia ; Biomaterials ; Cells ; Condensed Matter Physics ; Fabrication ; Inorganic chemistry ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Organic chemicals ; Perovskite ; Photovoltaics ; Solar cells ; Solar energy ; Solvents ; Toluene</subject><ispartof>Nature materials, 2014-09, Vol.13 (9), p.897-903</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</citedby><cites>FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24997740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Noh, Jun Hong</creatorcontrib><creatorcontrib>Kim, Young Chan</creatorcontrib><creatorcontrib>Yang, Woon Seok</creatorcontrib><creatorcontrib>Ryu, Seungchan</creatorcontrib><creatorcontrib>Seok, Sang Il</creatorcontrib><title>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH
3
NH
3
Pb(I
1
−
x
Br
x
)
3
(
x
= 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH
3
NH
3
I–PbI
2
–DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.</description><subject>639/301/299/946</subject><subject>639/301/357/551</subject><subject>639/624</subject><subject>Ammonia</subject><subject>Biomaterials</subject><subject>Cells</subject><subject>Condensed Matter Physics</subject><subject>Fabrication</subject><subject>Inorganic chemistry</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemicals</subject><subject>Perovskite</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solvents</subject><subject>Toluene</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQRi0EoqUgcQIUiQ0sArbj2MkSVfxJlVgAGzaR40xSl8QudlqpO-7ADTkJidqiqqv5Fk9vZj6Ezgm-IThKbk0jW4YJO0BDwgQPGef4cJMJoXSATryfYUxJHPNjNKAsTYVgeIg-Xm29BNMGYCptAJw2VVBaF0x1NQ3n4LrcSKMg0Ma6Shqtfr9_NimYrnKni6DD7NJ_6hYCb2vpAgV17U_RUSlrD2ebOULvD_dv46dw8vL4PL6bhIpR0oaE5QUDEgtBQKk8BlxECY5LmZZUpSSNZIqLuKRAE0VknijGIS9UmWAaE6GSaISu1t65s18L8G3WaN9fIA3Yhc-6n2NOuUhFh17uoTO7cKa7rqcEj2jEd4TKWe8dlNnc6Ua6VUZw1vedbfvu0IuNcJE3UPyD24I74HoN-HlfLbidjfuyP8Zwi2I</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Jeon, Nam Joong</creator><creator>Noh, Jun Hong</creator><creator>Kim, Young Chan</creator><creator>Yang, Woon Seok</creator><creator>Ryu, Seungchan</creator><creator>Seok, Sang Il</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</title><author>Jeon, Nam Joong ; Noh, Jun Hong ; Kim, Young Chan ; Yang, Woon Seok ; Ryu, Seungchan ; Seok, Sang Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/299/946</topic><topic>639/301/357/551</topic><topic>639/624</topic><topic>Ammonia</topic><topic>Biomaterials</topic><topic>Cells</topic><topic>Condensed Matter Physics</topic><topic>Fabrication</topic><topic>Inorganic chemistry</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemicals</topic><topic>Perovskite</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solvents</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Noh, Jun Hong</creatorcontrib><creatorcontrib>Kim, Young Chan</creatorcontrib><creatorcontrib>Yang, Woon Seok</creatorcontrib><creatorcontrib>Ryu, Seungchan</creatorcontrib><creatorcontrib>Seok, Sang Il</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Nam Joong</au><au>Noh, Jun Hong</au><au>Kim, Young Chan</au><au>Yang, Woon Seok</au><au>Ryu, Seungchan</au><au>Seok, Sang Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>13</volume><issue>9</issue><spage>897</spage><epage>903</epage><pages>897-903</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH
3
NH
3
Pb(I
1
−
x
Br
x
)
3
(
x
= 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH
3
NH
3
I–PbI
2
–DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24997740</pmid><doi>10.1038/nmat4014</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-09, Vol.13 (9), p.897-903 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1555626797 |
source | Nature |
subjects | 639/301/299/946 639/301/357/551 639/624 Ammonia Biomaterials Cells Condensed Matter Physics Fabrication Inorganic chemistry Materials Science Nanotechnology Optical and Electronic Materials Organic chemicals Perovskite Photovoltaics Solar cells Solar energy Solvents Toluene |
title | Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20engineering%20for%20high-performance%20inorganic%E2%80%93organic%20hybrid%20perovskite%20solar%20cells&rft.jtitle=Nature%20materials&rft.au=Jeon,%20Nam%20Joong&rft.date=2014-09-01&rft.volume=13&rft.issue=9&rft.spage=897&rft.epage=903&rft.pages=897-903&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4014&rft_dat=%3Cproquest_cross%3E1555626797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-14bd4e15771eccb5e0d3805fa9f2c9193a90d5f2e28c1ab8c46ebdcf802517c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1557632368&rft_id=info:pmid/24997740&rfr_iscdi=true |