Loading…

Flagellin from Marinobacter algicola and Vibrio vulnificus activates the innate immune response of gilthead seabream

Adjuvants have emerged as the best tools to enhance the efficacy of vaccination. However, the traditional adjuvants used in aquaculture may cause adverse alterations in fish making necessary the development of new adjuvants able to stimulate the immune system and offer strong protection against infe...

Full description

Saved in:
Bibliographic Details
Published in:Developmental and comparative immunology 2014-11, Vol.47 (1), p.160-167
Main Authors: Montero, Jana, Gómez-Casado, Eduardo, García-Alcázar, Alicia, Meseguer, José, Mulero, Victoriano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adjuvants have emerged as the best tools to enhance the efficacy of vaccination. However, the traditional adjuvants used in aquaculture may cause adverse alterations in fish making necessary the development of new adjuvants able to stimulate the immune system and offer strong protection against infectious pathogens with minimal undesirable effects. In this respect, flagellin seems an attractive candidate due to its ability to strongly stimulate the immune response of fish. In the present study, we have evaluated the ability of recombinant flagellin from Marinobacter algicola (MA) and Vibrio vulnificus (Vvul), a non-pathogenic and a pathogenic bacteria, respectively, to stimulate the innate immune system of gilthead seabream (Sparus aurata L.) and compare the effect with that of the classical flagellin from Salmonella enterica serovar Typhimurium (Salmonella Typhimurium, STF). Intraperitoneal injection of MA and Vvul resulted in a strong inflammatory response characterized by increased reactive oxygen species production and the infiltration of acidophilic granulocytes at the injection site. Interestingly, however, only flagellin from MA consistently induced the expression of the gene encoding pro-inflammatory interleukin-1β. These effects were further confirmed in vitro, where a dose-dependent activation of macrophages and acidophilic granulocytes by MA and Vvul flagellins was observed. In contrast, STF flagellin was found to be less potent in both in vivo and in vitro experiments. Our results suggest the potential use of MA and Vvul flagellins as immunostimulants and adjuvants for fish vaccination.
ISSN:0145-305X
1879-0089
DOI:10.1016/j.dci.2014.07.003