Loading…

Hidden structural order in orthorhombic Ta2O5

We investigate using first-principles calculations the atomic structure of the orthorhombic phase of Ta(2)O(5). Although this structure has been studied for decades, the correct structural model is controversial owing to the complication of structural disorder. We identify a new low-energy high-symm...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2013-06, Vol.110 (23), p.235502-235502
Main Authors: Lee, Sung-Hoon, Kim, Jongseob, Kim, Sae-Jin, Kim, Sungjin, Park, Gyeong-Su
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate using first-principles calculations the atomic structure of the orthorhombic phase of Ta(2)O(5). Although this structure has been studied for decades, the correct structural model is controversial owing to the complication of structural disorder. We identify a new low-energy high-symmetry structural model, where all Ta and O atoms have the correct formal oxidation states of +5 and -2, respectively, and the experimentally reported triangular lattice symmetry of the Ta sublattice appears dynamically at finite temperatures. To understand the complex atomic structure of the Ta(2)O(3) plane, a triangular graph-paper representation is devised and used alongside oxidation state analysis to reveal infinite variations of the low-energy structural model. The structural disorder of Ta(2)O(5) observed in experiments is attributed to the intrinsic structural variations, and oxygen vacancies that drive the collective relaxation of the O sublattice.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.110.235502