Loading…
Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle
We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) wi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1996-06, Vol.93 (12), p.5747-5752 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5752 |
container_issue | 12 |
container_start_page | 5747 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Stiles, Joel R. Van Helden, Dirk Bartol, Thomas M. Salpeter, Edwin E. Salpeter, Miriam M. |
description | We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s. |
doi_str_mv | 10.1073/pnas.93.12.5747 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15585992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39618</jstor_id><sourcerecordid>39618</sourcerecordid><originalsourceid>FETCH-LOGICAL-j203t-6330453c2d0e6bda9b7c897fbfd4d62054d9affb15a05ba8532aeaa380814a4a3</originalsourceid><addsrcrecordid>eNotj71OwzAURjOARPmZkZjuxJbixHGTSCxVWqBSK1AprNVNfENdOU6wnaI-Cu_CM_BMVCrTN5yjI31BcB2xYcRSftcZdMOcD6N4KNIkPQkGjMVpmCVxchacO7dljOUiY4Pge6GMQt9bgqmRnUZPUPTWkvGwVI5gpRpycB8xBr8_4KC2bQOzprPtjiRMetSwpKq1UpkPBwUaKAkWrSR9wF_Kb-AFnVM7gnFFfq-rTauVIZiouu6das2xiPC6N9h5VcE7OVVpugxOa9SOrv73Inh7mK6Kp3D-_DgrxvNwGzPuwxHnLBG8iiWjUSkxL9Mqy9O6rGUiRzETicyxrstIIBMlZoLHSIg8Y1mUYIL8Irg9dg-XPntyft0oV5HWaKjt3ToSIhN5Hh_Em6O4db61686qBu1-zfNRlPE_yl904g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15585992</pqid></control><display><type>article</type><title>Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</title><source>Open Access: PubMed Central</source><source>JSTOR</source><creator>Stiles, Joel R. ; Van Helden, Dirk ; Bartol, Thomas M. ; Salpeter, Edwin E. ; Salpeter, Miriam M.</creator><creatorcontrib>Stiles, Joel R. ; Van Helden, Dirk ; Bartol, Thomas M. ; Salpeter, Edwin E. ; Salpeter, Miriam M.</creatorcontrib><description>We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.</description><identifier>ISSN: 0027-8424</identifier><identifier>DOI: 10.1073/pnas.93.12.5747</identifier><language>eng</language><publisher>National Academy of Sciences of the United States of America</publisher><subject>Anolis carolinensis ; Biophysics ; Cholinergic receptors ; Electric current ; Electric potential ; Electrodes ; Mast cells ; Modeling ; Neurobiology ; Neurons ; Porosity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-06, Vol.93 (12), p.5747-5752</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39618$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39618$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Stiles, Joel R.</creatorcontrib><creatorcontrib>Van Helden, Dirk</creatorcontrib><creatorcontrib>Bartol, Thomas M.</creatorcontrib><creatorcontrib>Salpeter, Edwin E.</creatorcontrib><creatorcontrib>Salpeter, Miriam M.</creatorcontrib><title>Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.</description><subject>Anolis carolinensis</subject><subject>Biophysics</subject><subject>Cholinergic receptors</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Mast cells</subject><subject>Modeling</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Porosity</subject><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAURjOARPmZkZjuxJbixHGTSCxVWqBSK1AprNVNfENdOU6wnaI-Cu_CM_BMVCrTN5yjI31BcB2xYcRSftcZdMOcD6N4KNIkPQkGjMVpmCVxchacO7dljOUiY4Pge6GMQt9bgqmRnUZPUPTWkvGwVI5gpRpycB8xBr8_4KC2bQOzprPtjiRMetSwpKq1UpkPBwUaKAkWrSR9wF_Kb-AFnVM7gnFFfq-rTauVIZiouu6das2xiPC6N9h5VcE7OVVpugxOa9SOrv73Inh7mK6Kp3D-_DgrxvNwGzPuwxHnLBG8iiWjUSkxL9Mqy9O6rGUiRzETicyxrstIIBMlZoLHSIg8Y1mUYIL8Irg9dg-XPntyft0oV5HWaKjt3ToSIhN5Hh_Em6O4db61686qBu1-zfNRlPE_yl904g</recordid><startdate>19960611</startdate><enddate>19960611</enddate><creator>Stiles, Joel R.</creator><creator>Van Helden, Dirk</creator><creator>Bartol, Thomas M.</creator><creator>Salpeter, Edwin E.</creator><creator>Salpeter, Miriam M.</creator><general>National Academy of Sciences of the United States of America</general><scope>7TK</scope></search><sort><creationdate>19960611</creationdate><title>Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</title><author>Stiles, Joel R. ; Van Helden, Dirk ; Bartol, Thomas M. ; Salpeter, Edwin E. ; Salpeter, Miriam M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j203t-6330453c2d0e6bda9b7c897fbfd4d62054d9affb15a05ba8532aeaa380814a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Anolis carolinensis</topic><topic>Biophysics</topic><topic>Cholinergic receptors</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Mast cells</topic><topic>Modeling</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stiles, Joel R.</creatorcontrib><creatorcontrib>Van Helden, Dirk</creatorcontrib><creatorcontrib>Bartol, Thomas M.</creatorcontrib><creatorcontrib>Salpeter, Edwin E.</creatorcontrib><creatorcontrib>Salpeter, Miriam M.</creatorcontrib><collection>Neurosciences Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiles, Joel R.</au><au>Van Helden, Dirk</au><au>Bartol, Thomas M.</au><au>Salpeter, Edwin E.</au><au>Salpeter, Miriam M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>1996-06-11</date><risdate>1996</risdate><volume>93</volume><issue>12</issue><spage>5747</spage><epage>5752</epage><pages>5747-5752</pages><issn>0027-8424</issn><abstract>We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.</abstract><pub>National Academy of Sciences of the United States of America</pub><doi>10.1073/pnas.93.12.5747</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-06, Vol.93 (12), p.5747-5752 |
issn | 0027-8424 |
language | eng |
recordid | cdi_proquest_miscellaneous_15585992 |
source | Open Access: PubMed Central; JSTOR |
subjects | Anolis carolinensis Biophysics Cholinergic receptors Electric current Electric potential Electrodes Mast cells Modeling Neurobiology Neurons Porosity |
title | Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniature%20Endplate%20Current%20Rise%20Times%20%3C100%20%CE%BC%20s%20from%20Improved%20Dual%20Recordings%20Can%20be%20Modeled%20with%20Passive%20Acetylcholine%20Diffusion%20from%20a%20Synaptic%20Vesicle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stiles,%20Joel%20R.&rft.date=1996-06-11&rft.volume=93&rft.issue=12&rft.spage=5747&rft.epage=5752&rft.pages=5747-5752&rft.issn=0027-8424&rft_id=info:doi/10.1073/pnas.93.12.5747&rft_dat=%3Cjstor_proqu%3E39618%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j203t-6330453c2d0e6bda9b7c897fbfd4d62054d9affb15a05ba8532aeaa380814a4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15585992&rft_id=info:pmid/&rft_jstor_id=39618&rfr_iscdi=true |