Loading…

Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle

We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) wi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1996-06, Vol.93 (12), p.5747-5752
Main Authors: Stiles, Joel R., Van Helden, Dirk, Bartol, Thomas M., Salpeter, Edwin E., Salpeter, Miriam M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5752
container_issue 12
container_start_page 5747
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Stiles, Joel R.
Van Helden, Dirk
Bartol, Thomas M.
Salpeter, Edwin E.
Salpeter, Miriam M.
description We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.
doi_str_mv 10.1073/pnas.93.12.5747
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15585992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39618</jstor_id><sourcerecordid>39618</sourcerecordid><originalsourceid>FETCH-LOGICAL-j203t-6330453c2d0e6bda9b7c897fbfd4d62054d9affb15a05ba8532aeaa380814a4a3</originalsourceid><addsrcrecordid>eNotj71OwzAURjOARPmZkZjuxJbixHGTSCxVWqBSK1AprNVNfENdOU6wnaI-Cu_CM_BMVCrTN5yjI31BcB2xYcRSftcZdMOcD6N4KNIkPQkGjMVpmCVxchacO7dljOUiY4Pge6GMQt9bgqmRnUZPUPTWkvGwVI5gpRpycB8xBr8_4KC2bQOzprPtjiRMetSwpKq1UpkPBwUaKAkWrSR9wF_Kb-AFnVM7gnFFfq-rTauVIZiouu6das2xiPC6N9h5VcE7OVVpugxOa9SOrv73Inh7mK6Kp3D-_DgrxvNwGzPuwxHnLBG8iiWjUSkxL9Mqy9O6rGUiRzETicyxrstIIBMlZoLHSIg8Y1mUYIL8Irg9dg-XPntyft0oV5HWaKjt3ToSIhN5Hh_Em6O4db61686qBu1-zfNRlPE_yl904g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15585992</pqid></control><display><type>article</type><title>Miniature Endplate Current Rise Times &lt;100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</title><source>Open Access: PubMed Central</source><source>JSTOR</source><creator>Stiles, Joel R. ; Van Helden, Dirk ; Bartol, Thomas M. ; Salpeter, Edwin E. ; Salpeter, Miriam M.</creator><creatorcontrib>Stiles, Joel R. ; Van Helden, Dirk ; Bartol, Thomas M. ; Salpeter, Edwin E. ; Salpeter, Miriam M.</creatorcontrib><description>We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.</description><identifier>ISSN: 0027-8424</identifier><identifier>DOI: 10.1073/pnas.93.12.5747</identifier><language>eng</language><publisher>National Academy of Sciences of the United States of America</publisher><subject>Anolis carolinensis ; Biophysics ; Cholinergic receptors ; Electric current ; Electric potential ; Electrodes ; Mast cells ; Modeling ; Neurobiology ; Neurons ; Porosity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-06, Vol.93 (12), p.5747-5752</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39618$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39618$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Stiles, Joel R.</creatorcontrib><creatorcontrib>Van Helden, Dirk</creatorcontrib><creatorcontrib>Bartol, Thomas M.</creatorcontrib><creatorcontrib>Salpeter, Edwin E.</creatorcontrib><creatorcontrib>Salpeter, Miriam M.</creatorcontrib><title>Miniature Endplate Current Rise Times &lt;100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.</description><subject>Anolis carolinensis</subject><subject>Biophysics</subject><subject>Cholinergic receptors</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Mast cells</subject><subject>Modeling</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Porosity</subject><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAURjOARPmZkZjuxJbixHGTSCxVWqBSK1AprNVNfENdOU6wnaI-Cu_CM_BMVCrTN5yjI31BcB2xYcRSftcZdMOcD6N4KNIkPQkGjMVpmCVxchacO7dljOUiY4Pge6GMQt9bgqmRnUZPUPTWkvGwVI5gpRpycB8xBr8_4KC2bQOzprPtjiRMetSwpKq1UpkPBwUaKAkWrSR9wF_Kb-AFnVM7gnFFfq-rTauVIZiouu6das2xiPC6N9h5VcE7OVVpugxOa9SOrv73Inh7mK6Kp3D-_DgrxvNwGzPuwxHnLBG8iiWjUSkxL9Mqy9O6rGUiRzETicyxrstIIBMlZoLHSIg8Y1mUYIL8Irg9dg-XPntyft0oV5HWaKjt3ToSIhN5Hh_Em6O4db61686qBu1-zfNRlPE_yl904g</recordid><startdate>19960611</startdate><enddate>19960611</enddate><creator>Stiles, Joel R.</creator><creator>Van Helden, Dirk</creator><creator>Bartol, Thomas M.</creator><creator>Salpeter, Edwin E.</creator><creator>Salpeter, Miriam M.</creator><general>National Academy of Sciences of the United States of America</general><scope>7TK</scope></search><sort><creationdate>19960611</creationdate><title>Miniature Endplate Current Rise Times &lt;100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</title><author>Stiles, Joel R. ; Van Helden, Dirk ; Bartol, Thomas M. ; Salpeter, Edwin E. ; Salpeter, Miriam M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j203t-6330453c2d0e6bda9b7c897fbfd4d62054d9affb15a05ba8532aeaa380814a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Anolis carolinensis</topic><topic>Biophysics</topic><topic>Cholinergic receptors</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Mast cells</topic><topic>Modeling</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stiles, Joel R.</creatorcontrib><creatorcontrib>Van Helden, Dirk</creatorcontrib><creatorcontrib>Bartol, Thomas M.</creatorcontrib><creatorcontrib>Salpeter, Edwin E.</creatorcontrib><creatorcontrib>Salpeter, Miriam M.</creatorcontrib><collection>Neurosciences Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiles, Joel R.</au><au>Van Helden, Dirk</au><au>Bartol, Thomas M.</au><au>Salpeter, Edwin E.</au><au>Salpeter, Miriam M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniature Endplate Current Rise Times &lt;100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>1996-06-11</date><risdate>1996</risdate><volume>93</volume><issue>12</issue><spage>5747</spage><epage>5752</epage><pages>5747-5752</pages><issn>0027-8424</issn><abstract>We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of ≈ 80 μ s at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 μ s. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm· ms-1 (rapid, from endplate Ω figure appearance) or 0.275 nm· ms-1 (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 μ s.</abstract><pub>National Academy of Sciences of the United States of America</pub><doi>10.1073/pnas.93.12.5747</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-06, Vol.93 (12), p.5747-5752
issn 0027-8424
language eng
recordid cdi_proquest_miscellaneous_15585992
source Open Access: PubMed Central; JSTOR
subjects Anolis carolinensis
Biophysics
Cholinergic receptors
Electric current
Electric potential
Electrodes
Mast cells
Modeling
Neurobiology
Neurons
Porosity
title Miniature Endplate Current Rise Times <100 μ s from Improved Dual Recordings Can be Modeled with Passive Acetylcholine Diffusion from a Synaptic Vesicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniature%20Endplate%20Current%20Rise%20Times%20%3C100%20%CE%BC%20s%20from%20Improved%20Dual%20Recordings%20Can%20be%20Modeled%20with%20Passive%20Acetylcholine%20Diffusion%20from%20a%20Synaptic%20Vesicle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stiles,%20Joel%20R.&rft.date=1996-06-11&rft.volume=93&rft.issue=12&rft.spage=5747&rft.epage=5752&rft.pages=5747-5752&rft.issn=0027-8424&rft_id=info:doi/10.1073/pnas.93.12.5747&rft_dat=%3Cjstor_proqu%3E39618%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j203t-6330453c2d0e6bda9b7c897fbfd4d62054d9affb15a05ba8532aeaa380814a4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15585992&rft_id=info:pmid/&rft_jstor_id=39618&rfr_iscdi=true