Loading…
Identification of Multiword Expressions by Combining Multiple Linguistic Information Sources
We propose a framework for using multiple sources of linguistic information in the task of identifying multiword expressions in natural language texts. We define various linguistically motivated classification features and introduce novel ways for computing them. We then manually define interrelatio...
Saved in:
Published in: | Computational linguistics - Association for Computational Linguistics 2014-06, Vol.40 (2), p.449-468 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393 |
container_end_page | 468 |
container_issue | 2 |
container_start_page | 449 |
container_title | Computational linguistics - Association for Computational Linguistics |
container_volume | 40 |
creator | Tsvetkov, Yulia Wintner, Shuly |
description | We propose a framework for using multiple sources of linguistic information in the task of identifying multiword expressions in natural language texts. We define various linguistically motivated classification features and introduce novel ways for computing them. We then manually define interrelationships among the features, and express them in a Bayesian network. The result is a powerful classifier that can identify multiword expressions of various types and multiple syntactic constructions in text corpora. Our methodology is unsupervised and language-independent; it requires relatively few language resources and is thus suitable for a large number of languages. We report results on English, French, and Hebrew, and demonstrate a significant improvement in identification accuracy, compared with less sophisticated baselines. |
doi_str_mv | 10.1162/COLI_a_00177 |
format | article |
fullrecord | <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1558998797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3f0453f4268e43c78a83e573829e4b82</doaj_id><sourcerecordid>1559696477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393</originalsourceid><addsrcrecordid>eNqNkU1v1DAQQC0EEkvhxg-I1EsPhI6_YvtWtCol0lY9ADcky3GcyqskTu0EaH993QZVq6oHTpZnnt-MZxD6iOEzxhU53V7tam00ABbiFdpgTqFUFJPXaANS4ZLkxFv0LqU9AAigYoN-1a0bZ995a2YfxiJ0xeXSz_5PiG1x_neKLqUcT0VzW2zD0PjRj9crMvWu2OXb4tPsbVGPXYjDavkelmhdeo_edKZP7sO_8wj9_Hr-Y_ut3F1d1Nsvu9JyQufSYQISlBFSOGVlQzntgBNleaO6qq2kYA2vVCU5x7JqWia4Accd5g1jjCp6hOrV2waz11P0g4m3OhivHwMhXmsTc4-909nMsp6RSjpGrZBGUscFlUQ51kiSXSera4rhZnFp1oNP1vW9GV1Yksacq9wLE-J_UKmUFOoBPX6G7vOIxjyUTDEqlJQcMvVppWwMKUXXPf0Fg37YsD7ccMbPVnzwBz4bev-bgSeaAs7b1wQIzq81SH3np8f8geLkBcWL1e4BFw24nw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543798850</pqid></control><display><type>article</type><title>Identification of Multiword Expressions by Combining Multiple Linguistic Information Sources</title><source>MIT Press Direct OA Journals</source><source>EBSCOhost MLA International Bibliography With Full Text</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Tsvetkov, Yulia ; Wintner, Shuly</creator><creatorcontrib>Tsvetkov, Yulia ; Wintner, Shuly</creatorcontrib><description>We propose a framework for using multiple sources of linguistic information in the task of identifying multiword expressions in natural language texts. We define various linguistically motivated classification features and introduce novel ways for computing them. We then manually define interrelationships among the features, and express them in a Bayesian network. The result is a powerful classifier that can identify multiword expressions of various types and multiple syntactic constructions in text corpora. Our methodology is unsupervised and language-independent; it requires relatively few language resources and is thus suitable for a large number of languages. We report results on English, French, and Hebrew, and demonstrate a significant improvement in identification accuracy, compared with less sophisticated baselines.</description><identifier>ISSN: 0891-2017</identifier><identifier>EISSN: 1530-9312</identifier><identifier>DOI: 10.1162/COLI_a_00177</identifier><identifier>CODEN: CLINEE</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Bayesian analysis ; Classification ; Classifiers ; Computation ; Computer science ; Linguistics ; Networks ; Tasks ; Texts</subject><ispartof>Computational linguistics - Association for Computational Linguistics, 2014-06, Vol.40 (2), p.449-468</ispartof><rights>Copyright MIT Press Journals Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393</citedby><cites>FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/coli/article/doi/10.1162/COLI_a_00177$$EHTML$$P50$$Gmit$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27898,27899,31243,31244,64338</link.rule.ids></links><search><creatorcontrib>Tsvetkov, Yulia</creatorcontrib><creatorcontrib>Wintner, Shuly</creatorcontrib><title>Identification of Multiword Expressions by Combining Multiple Linguistic Information Sources</title><title>Computational linguistics - Association for Computational Linguistics</title><description>We propose a framework for using multiple sources of linguistic information in the task of identifying multiword expressions in natural language texts. We define various linguistically motivated classification features and introduce novel ways for computing them. We then manually define interrelationships among the features, and express them in a Bayesian network. The result is a powerful classifier that can identify multiword expressions of various types and multiple syntactic constructions in text corpora. Our methodology is unsupervised and language-independent; it requires relatively few language resources and is thus suitable for a large number of languages. We report results on English, French, and Hebrew, and demonstrate a significant improvement in identification accuracy, compared with less sophisticated baselines.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computation</subject><subject>Computer science</subject><subject>Linguistics</subject><subject>Networks</subject><subject>Tasks</subject><subject>Texts</subject><issn>0891-2017</issn><issn>1530-9312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQQC0EEkvhxg-I1EsPhI6_YvtWtCol0lY9ADcky3GcyqskTu0EaH993QZVq6oHTpZnnt-MZxD6iOEzxhU53V7tam00ABbiFdpgTqFUFJPXaANS4ZLkxFv0LqU9AAigYoN-1a0bZ995a2YfxiJ0xeXSz_5PiG1x_neKLqUcT0VzW2zD0PjRj9crMvWu2OXb4tPsbVGPXYjDavkelmhdeo_edKZP7sO_8wj9_Hr-Y_ut3F1d1Nsvu9JyQufSYQISlBFSOGVlQzntgBNleaO6qq2kYA2vVCU5x7JqWia4Accd5g1jjCp6hOrV2waz11P0g4m3OhivHwMhXmsTc4-909nMsp6RSjpGrZBGUscFlUQ51kiSXSera4rhZnFp1oNP1vW9GV1Yksacq9wLE-J_UKmUFOoBPX6G7vOIxjyUTDEqlJQcMvVppWwMKUXXPf0Fg37YsD7ccMbPVnzwBz4bev-bgSeaAs7b1wQIzq81SH3np8f8geLkBcWL1e4BFw24nw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Tsvetkov, Yulia</creator><creator>Wintner, Shuly</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>The MIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20140601</creationdate><title>Identification of Multiword Expressions by Combining Multiple Linguistic Information Sources</title><author>Tsvetkov, Yulia ; Wintner, Shuly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computation</topic><topic>Computer science</topic><topic>Linguistics</topic><topic>Networks</topic><topic>Tasks</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsvetkov, Yulia</creatorcontrib><creatorcontrib>Wintner, Shuly</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsvetkov, Yulia</au><au>Wintner, Shuly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Multiword Expressions by Combining Multiple Linguistic Information Sources</atitle><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>40</volume><issue>2</issue><spage>449</spage><epage>468</epage><pages>449-468</pages><issn>0891-2017</issn><eissn>1530-9312</eissn><coden>CLINEE</coden><abstract>We propose a framework for using multiple sources of linguistic information in the task of identifying multiword expressions in natural language texts. We define various linguistically motivated classification features and introduce novel ways for computing them. We then manually define interrelationships among the features, and express them in a Bayesian network. The result is a powerful classifier that can identify multiword expressions of various types and multiple syntactic constructions in text corpora. Our methodology is unsupervised and language-independent; it requires relatively few language resources and is thus suitable for a large number of languages. We report results on English, French, and Hebrew, and demonstrate a significant improvement in identification accuracy, compared with less sophisticated baselines.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><doi>10.1162/COLI_a_00177</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-2017 |
ispartof | Computational linguistics - Association for Computational Linguistics, 2014-06, Vol.40 (2), p.449-468 |
issn | 0891-2017 1530-9312 |
language | eng |
recordid | cdi_proquest_miscellaneous_1558998797 |
source | MIT Press Direct OA Journals; EBSCOhost MLA International Bibliography With Full Text; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); Linguistics and Language Behavior Abstracts (LLBA) |
subjects | Bayesian analysis Classification Classifiers Computation Computer science Linguistics Networks Tasks Texts |
title | Identification of Multiword Expressions by Combining Multiple Linguistic Information Sources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T09%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Multiword%20Expressions%20by%20Combining%20Multiple%20Linguistic%20Information%20Sources&rft.jtitle=Computational%20linguistics%20-%20Association%20for%20Computational%20Linguistics&rft.au=Tsvetkov,%20Yulia&rft.date=2014-06-01&rft.volume=40&rft.issue=2&rft.spage=449&rft.epage=468&rft.pages=449-468&rft.issn=0891-2017&rft.eissn=1530-9312&rft.coden=CLINEE&rft_id=info:doi/10.1162/COLI_a_00177&rft_dat=%3Cproquest_mit_j%3E1559696477%3C/proquest_mit_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-e120809a787e9c8b353f0529c5b9f6d6874b5696855186bd475a0e5e15b444393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1543798850&rft_id=info:pmid/&rfr_iscdi=true |