Loading…

An adaptive multiphase approach for large unconditional and conditional p-median problems

•A novel multiphase for large p-median problems is proposed.•An effective integration of aggregation, VNS and exact methods is introduced.•New best solutions for some benchmark problems are found.•A new large dataset for p-median problems with guaranteed optimality is constructed.•An adaptation of o...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research 2014-09, Vol.237 (2), p.590-605
Main Authors: Irawan, Chandra Ade, Salhi, Said, Scaparra, Maria Paola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•A novel multiphase for large p-median problems is proposed.•An effective integration of aggregation, VNS and exact methods is introduced.•New best solutions for some benchmark problems are found.•A new large dataset for p-median problems with guaranteed optimality is constructed.•An adaptation of our approach for the conditional p-median problem is presented. A multiphase approach that incorporates demand points aggregation, Variable Neighbourhood Search (VNS) and an exact method is proposed for the solution of large-scale unconditional and conditional p-median problems. The method consists of four phases. In the first phase several aggregated problems are solved with a “Local Search with Shaking” procedure to generate promising facility sites which are then used to solve a reduced problem in Phase 2 using VNS or an exact method. The new solution is then fed into an iterative learning process which tackles the aggregated problem (Phase 3). Phase 4 is a post optimisation phase applied to the original (disaggregated) problem. For the p-median problem, the method is tested on three types of datasets which consist of up to 89,600 demand points. The first two datasets are the BIRCH and the TSP datasets whereas the third is our newly geometrically constructed dataset that has guaranteed optimal solutions. The computational experiments show that the proposed approach produces very competitive results. The proposed approach is also adapted to cater for the conditional p-median problem with interesting results.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2014.01.050