Loading…

Electrochemical mechanism of electrolysis codeposition of Mg-Sr alloy in molten salt

The electrochemical process of Mg-Sr codeposition was studied in MgCl2-SrCl2-KCl melts containing different MgCl2 concentrations at 700 °C by cyclic voltammetry, chronopotentiometry and chronoamperometry. The results show that the actual precipitation potential of Sr reduces by nearly 0.5 V because...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Nonferrous Metals Society of China 2014-05, Vol.24 (5), p.1629-1634
Main Authors: SUN, Xiu-yun, LU, Gui-min, FAN, Shu-di
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrochemical process of Mg-Sr codeposition was studied in MgCl2-SrCl2-KCl melts containing different MgCl2 concentrations at 700 °C by cyclic voltammetry, chronopotentiometry and chronoamperometry. The results show that the actual precipitation potential of Sr reduces by nearly 0.5 V because of the depolarization effects of Sr activity reduced by forming Mg-Sr alloy. The codeposition potential condition of Mg and Sr to form Mg-Sr alloy is as follows: When electrode potential is more negative than −1.5 V, the magnesium will precipitate; when electrode potential is more negative than −2.0 V, the magnesium and strontium will both deposit. The control step of codeposition process of Mg and Sr is not diffusion control step. The codeposition current condition of Mg and Sr to form Mg-Sr alloy by chronoptentiometry is as follows: cathode current densities are higher than 0.71, 1.57 and 2.83 A/cm2 in MgCl2-SrCl2-KCl melts with MgCl2 concentrations of 2%, 5% and 10% (mass fraction), respectively.
ISSN:1003-6326
DOI:10.1016/S1003-6326(14)63234-9