Loading…

Differential Microstrip and Slot-Ring Antennas for Millimeter-Wave Silicon Systems

Differential on-chip microstrip and slot-ring antennas with a quartz superstrate are presented for wafer-scale silicon systems. The antennas are fed at the nonradiating edge, which is compatible with differential coupled-lines, and are built on a 0.13-μ m CMOS process with a layout that meets all th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2012-06, Vol.60 (6), p.2611-2619
Main Authors: Yu-Chin Ou, Rebeiz, G. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Differential on-chip microstrip and slot-ring antennas with a quartz superstrate are presented for wafer-scale silicon systems. The antennas are fed at the nonradiating edge, which is compatible with differential coupled-lines, and are built on a 0.13-μ m CMOS process with a layout that meets all the metal density rules. A high radiation efficiency is achieved using a 100- μm quartz superstrate placed on top of the silicon chip. Both antennas have a measured gain varies from about 2 to 3 dBi at 91-94 GHz, with a - 10-dB S 11 bandwidth of 7-8 GHz and a simulated radiation efficiency of >;50%. The designs are compatible with single- and multielement transceivers, and with wafer-scale imaging systems and power-combining arrays.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2012.2194651