Loading…

Challenges of D=6N=(1,1) SYM theory

Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses si...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. B 2014-06, Vol.734, p.111-115
Main Authors: Bork, L.V., Kazakov, D.I., Vlasenko, D.E.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 115
container_issue
container_start_page 111
container_title Physics letters. B
container_volume 734
creator Bork, L.V.
Kazakov, D.I.
Vlasenko, D.E.
description Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.
doi_str_mv 10.1016/j.physletb.2014.05.022
format article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559668172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269314003244</els_id><sourcerecordid>1559668172</sourcerecordid><originalsourceid>FETCH-LOGICAL-e160t-69d41f86b02649c74b97b72a5410b980bee4dc748152df95a63e83f4e4a1b6de3</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhQdRsFb_ggTcVDDx3nklsygo8QlVF-rC1ZBJbkxCbGomFfrvTamuDhw-DoePsVOECAH1ZROtqo1vaXARB5QRqAg432MTTGIRcinVPpuAiCHk2ohDduR9AwCoQE_YWVplbUvLT_JBVwY3c_08n-EFngevH0_BUFHXb47ZQZm1nk7-csre727f0odw8XL_mF4vQkINQ6hNIbFMtAOupclj6UzsYp4pieBMAo5IFmOdoOJFaVSmBSWilCQzdLogMWWz3e6q777X5Af7Vfuc2jZbUrf2FpUyWicY8xG92qE0_vmpqbc-r2mZU1H3lA-26GqLYLd-bGP__ditHwvKjn7EL4I1WPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559668172</pqid></control><display><type>article</type><title>Challenges of D=6N=(1,1) SYM theory</title><source>Elsevier</source><source>Elsevier ScienceDirect Journals</source><creator>Bork, L.V. ; Kazakov, D.I. ; Vlasenko, D.E.</creator><creatorcontrib>Bork, L.V. ; Kazakov, D.I. ; Vlasenko, D.E.</creatorcontrib><description>Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2014.05.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amplitudes ; Asymptotic properties ; Elementary particles ; Extended supersymmetry ; Factorization ; Formalism ; Mathematical analysis ; Mathematical models ; Regge behaviour ; Scattering amplitude ; Shells ; UV divergences</subject><ispartof>Physics letters. B, 2014-06, Vol.734, p.111-115</ispartof><rights>2014 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269314003244$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Bork, L.V.</creatorcontrib><creatorcontrib>Kazakov, D.I.</creatorcontrib><creatorcontrib>Vlasenko, D.E.</creatorcontrib><title>Challenges of D=6N=(1,1) SYM theory</title><title>Physics letters. B</title><description>Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.</description><subject>Amplitudes</subject><subject>Asymptotic properties</subject><subject>Elementary particles</subject><subject>Extended supersymmetry</subject><subject>Factorization</subject><subject>Formalism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Regge behaviour</subject><subject>Scattering amplitude</subject><subject>Shells</subject><subject>UV divergences</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AUhQdRsFb_ggTcVDDx3nklsygo8QlVF-rC1ZBJbkxCbGomFfrvTamuDhw-DoePsVOECAH1ZROtqo1vaXARB5QRqAg432MTTGIRcinVPpuAiCHk2ohDduR9AwCoQE_YWVplbUvLT_JBVwY3c_08n-EFngevH0_BUFHXb47ZQZm1nk7-csre727f0odw8XL_mF4vQkINQ6hNIbFMtAOupclj6UzsYp4pieBMAo5IFmOdoOJFaVSmBSWilCQzdLogMWWz3e6q777X5Af7Vfuc2jZbUrf2FpUyWicY8xG92qE0_vmpqbc-r2mZU1H3lA-26GqLYLd-bGP__ditHwvKjn7EL4I1WPo</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Bork, L.V.</creator><creator>Kazakov, D.I.</creator><creator>Vlasenko, D.E.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140627</creationdate><title>Challenges of D=6N=(1,1) SYM theory</title><author>Bork, L.V. ; Kazakov, D.I. ; Vlasenko, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e160t-69d41f86b02649c74b97b72a5410b980bee4dc748152df95a63e83f4e4a1b6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Asymptotic properties</topic><topic>Elementary particles</topic><topic>Extended supersymmetry</topic><topic>Factorization</topic><topic>Formalism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Regge behaviour</topic><topic>Scattering amplitude</topic><topic>Shells</topic><topic>UV divergences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bork, L.V.</creatorcontrib><creatorcontrib>Kazakov, D.I.</creatorcontrib><creatorcontrib>Vlasenko, D.E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bork, L.V.</au><au>Kazakov, D.I.</au><au>Vlasenko, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges of D=6N=(1,1) SYM theory</atitle><jtitle>Physics letters. B</jtitle><date>2014-06-27</date><risdate>2014</risdate><volume>734</volume><spage>111</spage><epage>115</epage><pages>111-115</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2014.05.022</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-2693
ispartof Physics letters. B, 2014-06, Vol.734, p.111-115
issn 0370-2693
1873-2445
language eng
recordid cdi_proquest_miscellaneous_1559668172
source Elsevier; Elsevier ScienceDirect Journals
subjects Amplitudes
Asymptotic properties
Elementary particles
Extended supersymmetry
Factorization
Formalism
Mathematical analysis
Mathematical models
Regge behaviour
Scattering amplitude
Shells
UV divergences
title Challenges of D=6N=(1,1) SYM theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20of%20D=6N=(1,1)%20SYM%20theory&rft.jtitle=Physics%20letters.%20B&rft.au=Bork,%20L.V.&rft.date=2014-06-27&rft.volume=734&rft.spage=111&rft.epage=115&rft.pages=111-115&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2014.05.022&rft_dat=%3Cproquest_elsev%3E1559668172%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e160t-69d41f86b02649c74b97b72a5410b980bee4dc748152df95a63e83f4e4a1b6de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559668172&rft_id=info:pmid/&rfr_iscdi=true