Loading…
Challenges of D=6N=(1,1) SYM theory
Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses si...
Saved in:
Published in: | Physics letters. B 2014-06, Vol.734, p.111-115 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 115 |
container_issue | |
container_start_page | 111 |
container_title | Physics letters. B |
container_volume | 734 |
creator | Bork, L.V. Kazakov, D.I. Vlasenko, D.E. |
description | Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories. |
doi_str_mv | 10.1016/j.physletb.2014.05.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559668172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269314003244</els_id><sourcerecordid>1559668172</sourcerecordid><originalsourceid>FETCH-LOGICAL-e160t-69d41f86b02649c74b97b72a5410b980bee4dc748152df95a63e83f4e4a1b6de3</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhQdRsFb_ggTcVDDx3nklsygo8QlVF-rC1ZBJbkxCbGomFfrvTamuDhw-DoePsVOECAH1ZROtqo1vaXARB5QRqAg432MTTGIRcinVPpuAiCHk2ohDduR9AwCoQE_YWVplbUvLT_JBVwY3c_08n-EFngevH0_BUFHXb47ZQZm1nk7-csre727f0odw8XL_mF4vQkINQ6hNIbFMtAOupclj6UzsYp4pieBMAo5IFmOdoOJFaVSmBSWilCQzdLogMWWz3e6q777X5Af7Vfuc2jZbUrf2FpUyWicY8xG92qE0_vmpqbc-r2mZU1H3lA-26GqLYLd-bGP__ditHwvKjn7EL4I1WPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559668172</pqid></control><display><type>article</type><title>Challenges of D=6N=(1,1) SYM theory</title><source>Elsevier</source><source>Elsevier ScienceDirect Journals</source><creator>Bork, L.V. ; Kazakov, D.I. ; Vlasenko, D.E.</creator><creatorcontrib>Bork, L.V. ; Kazakov, D.I. ; Vlasenko, D.E.</creatorcontrib><description>Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2014.05.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Amplitudes ; Asymptotic properties ; Elementary particles ; Extended supersymmetry ; Factorization ; Formalism ; Mathematical analysis ; Mathematical models ; Regge behaviour ; Scattering amplitude ; Shells ; UV divergences</subject><ispartof>Physics letters. B, 2014-06, Vol.734, p.111-115</ispartof><rights>2014 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269314003244$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Bork, L.V.</creatorcontrib><creatorcontrib>Kazakov, D.I.</creatorcontrib><creatorcontrib>Vlasenko, D.E.</creatorcontrib><title>Challenges of D=6N=(1,1) SYM theory</title><title>Physics letters. B</title><description>Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.</description><subject>Amplitudes</subject><subject>Asymptotic properties</subject><subject>Elementary particles</subject><subject>Extended supersymmetry</subject><subject>Factorization</subject><subject>Formalism</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Regge behaviour</subject><subject>Scattering amplitude</subject><subject>Shells</subject><subject>UV divergences</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AUhQdRsFb_ggTcVDDx3nklsygo8QlVF-rC1ZBJbkxCbGomFfrvTamuDhw-DoePsVOECAH1ZROtqo1vaXARB5QRqAg432MTTGIRcinVPpuAiCHk2ohDduR9AwCoQE_YWVplbUvLT_JBVwY3c_08n-EFngevH0_BUFHXb47ZQZm1nk7-csre727f0odw8XL_mF4vQkINQ6hNIbFMtAOupclj6UzsYp4pieBMAo5IFmOdoOJFaVSmBSWilCQzdLogMWWz3e6q777X5Af7Vfuc2jZbUrf2FpUyWicY8xG92qE0_vmpqbc-r2mZU1H3lA-26GqLYLd-bGP__ditHwvKjn7EL4I1WPo</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Bork, L.V.</creator><creator>Kazakov, D.I.</creator><creator>Vlasenko, D.E.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140627</creationdate><title>Challenges of D=6N=(1,1) SYM theory</title><author>Bork, L.V. ; Kazakov, D.I. ; Vlasenko, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e160t-69d41f86b02649c74b97b72a5410b980bee4dc748152df95a63e83f4e4a1b6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Asymptotic properties</topic><topic>Elementary particles</topic><topic>Extended supersymmetry</topic><topic>Factorization</topic><topic>Formalism</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Regge behaviour</topic><topic>Scattering amplitude</topic><topic>Shells</topic><topic>UV divergences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bork, L.V.</creatorcontrib><creatorcontrib>Kazakov, D.I.</creatorcontrib><creatorcontrib>Vlasenko, D.E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bork, L.V.</au><au>Kazakov, D.I.</au><au>Vlasenko, D.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges of D=6N=(1,1) SYM theory</atitle><jtitle>Physics letters. B</jtitle><date>2014-06-27</date><risdate>2014</risdate><volume>734</volume><spage>111</spage><epage>115</epage><pages>111-115</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Maximally supersymmetric Yang–Mills theories have several remarkable properties, among which are the cancellation of UV divergences, factorization of higher loop corrections and possible integrability. Much attention has been attracted to the N=4D=4 SYM theory. The N=(1,1)D=6 SYM theory possesses similar properties but is nonrenormalizable and serves as a toy model for supergravity. We consider the on-shell four point scattering amplitude and analyze its perturbative expansion within the spin-helicity and superspace formalism. The integrands of the resulting diagrams coincide with those of the N=4D=4 SYM and obey the dual conformal invariance. Contrary to 4 dimensions, no IR divergences on mass shell appear. We calculate analytically the leading logarithmic asymptotics in all loops. Their summation leads to a Regge trajectory which is calculated exactly. The leading powers of s are calculated up to six loops. Their summation is performed numerically and leads to a smooth function of s. The leading UV divergences are calculated up to 5 loops. The result suggests the geometrical progression which ends up in a finite expression. This leads us to a radical point of view on nonrenormalizable theories.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2014.05.022</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2014-06, Vol.734, p.111-115 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559668172 |
source | Elsevier; Elsevier ScienceDirect Journals |
subjects | Amplitudes Asymptotic properties Elementary particles Extended supersymmetry Factorization Formalism Mathematical analysis Mathematical models Regge behaviour Scattering amplitude Shells UV divergences |
title | Challenges of D=6N=(1,1) SYM theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20of%20D=6N=(1,1)%20SYM%20theory&rft.jtitle=Physics%20letters.%20B&rft.au=Bork,%20L.V.&rft.date=2014-06-27&rft.volume=734&rft.spage=111&rft.epage=115&rft.pages=111-115&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2014.05.022&rft_dat=%3Cproquest_elsev%3E1559668172%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e160t-69d41f86b02649c74b97b72a5410b980bee4dc748152df95a63e83f4e4a1b6de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559668172&rft_id=info:pmid/&rfr_iscdi=true |