Loading…
Effect of cooling rate on solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy
The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy during solidification process were studied. To obtain different cooling rates, the step casting with five different thicknesses was used and the cooling rates and solidification parameters we...
Saved in:
Published in: | Transactions of Nonferrous Metals Society of China 2014-06, Vol.24 (6), p.1645-1652 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy during solidification process were studied. To obtain different cooling rates, the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method. The results show that at higher cooling rates, the primary α(Al) dendrite nucleation temperature, eutectic reaction temperature and solidus temperature shift to lower temperatures. Besides, with increasing cooling rate from 0.19 °C/s up to 6.25 °C/s, the secondary dendritic arm spacing decreases from 68 μm to 20 μm, and the primary dendritic volume fraction declines by approximately 5%. In addition, it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution. It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology, and decreasing block or lamella shape eutectic silicon. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(14)63236-2 |