Loading…
Non-conventional oils for biodiesel production: a study of thermal and oxidative stability
Vegetable oils with variable proportions of oleic, linoleic, and linolenic acids are more susceptible to oxidative processes. In this subject, this study evaluates the physical chemical properties and oxidative stability of non-conventional oils such as andiroba, babassu, sesame, oiticica, jatropha,...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2014-08, Vol.117 (2), p.845-849 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vegetable oils with variable proportions of oleic, linoleic, and linolenic acids are more susceptible to oxidative processes. In this subject, this study evaluates the physical chemical properties and oxidative stability of non-conventional oils such as andiroba, babassu, sesame, oiticica, jatropha, and grape through accelerated oxidation techniques (pressurized differential scanning calorimetry, Rancimat and PetroOxy). It was verified that babassu and andiroba oil do not showed detectable induction period presenting high oxidative stability; moreover, it was observed that the enthalpic events occurred in 1.19, >10, 0.53, 0.49, 0.49, and 0.60 h for the andiroba oil, babassu oil, sesame seeds, jatropha, oiticica oils, and grapes, respectively, stimulating the conclusion of greater stability for the babassu oil. |
---|---|
ISSN: | 1388-6150 1588-2926 1572-8943 |
DOI: | 10.1007/s10973-014-3825-0 |