Loading…

Influence of Pore Fluid Chemistry on the Mechanical Properties of Clay-Based Materials

The producers of nuclear waste, within all countries exploring options, including Canada, have determined the long-term solution to be a deep geological repository. In the Canadian concept, within the deep geologic repository a number of clay-based barriers will separate the containers from the surr...

Full description

Saved in:
Bibliographic Details
Published in:Geotechnical and geological engineering 2014-08, Vol.32 (4), p.1029-1042
Main Authors: Siddiqua, Sumi, Siemens, Greg, Blatz, James, Man, Alex, Lim, Bee Fong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The producers of nuclear waste, within all countries exploring options, including Canada, have determined the long-term solution to be a deep geological repository. In the Canadian concept, within the deep geologic repository a number of clay-based barriers will separate the containers from the surrounding geosphere. Following placement the surrounding groundwater will infiltrate into the repository. In order to analyze the performance of the repository under very complex conditions, accurate material properties are required. The chemistry of the host rock is an important aspect as the behaviour of clay-based barrier materials could be affected by the saturating saline groundwater. This paper investigates the saturated mechanical behaviour of light backfill (composed of 50 % silica sand and 50 % Na-bentonite clay) and dense backfill (composed of 70 % crushed granite, 25 % glacial lake clay and 5 % Na-bentonite clay) and the quantifying the effect of pore fluid chemistry on the strength and compressibility behaviour of the materials. The results indicate that light backfill behaviour is strongly influenced by its pore fluid chemistry while dense backfill shows limited effects. The material parameters of light backfill and dense backfill are interpreted for input into numerical simulations. These results and interpretation enrich the understanding of the mechanical response of light and dense backfill, two components of the sealing system of the Canadian deep geologic repository.
ISSN:0960-3182
1573-1529
DOI:10.1007/s10706-014-9778-z