Loading…
Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness
We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi f...
Saved in:
Published in: | Carbon (New York) 2014-07, Vol.73, p.13-24 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3 |
container_end_page | 24 |
container_issue | |
container_start_page | 13 |
container_title | Carbon (New York) |
container_volume | 73 |
creator | Esconjauregui, S. Bhardwaj, S. Yang, J. Castellarin-Cudia, C. Xie, R. D’Arsié, L. Makaryan, T. Sugime, H. Fernandez, S.E. Cepek, C. Robertson, J. |
description | We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials. |
doi_str_mv | 10.1016/j.carbon.2014.02.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559679518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314001535</els_id><sourcerecordid>1559679518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-Aw-5CF56TCWdj_YgyODHwoIXPYfqdLXbY28yJmll_70ZZ_EoFBRVPG-91MvYSxB7EGDeHPcB85jiXgro90K2Mo_YDpxVnXIDPGY7IYTrjJTqKXtWyrGNvYN-x_zhr5JHjKluI_HvOf2ut7ytQorTFmrK5S2_jvO6UQzE08zrLfGynU4pV15qbsyWiWOceMCK632pDVnCj0ilPGdPZlwLvXjoV-zbxw9fD5-7my-frg_vb7qgzFA7DYrQoQYChUNPkwXQ0s3BDgNpdMaAVrMlBCN0GK22th-lHEUvsBGkrtjry91TTj83KtXfLSXQumKktBUPWg_GDhpcQ_sLGnIqJdPsT3m5w3zvQfhznv7oL3n6c55eyFamyV49OGAJuM4ZY1jKP610yho5iMa9u3DU3v21UPYlLOfopiVTqH5Ky_-N_gDePI4m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559679518</pqid></control><display><type>article</type><title>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</title><source>Elsevier</source><creator>Esconjauregui, S. ; Bhardwaj, S. ; Yang, J. ; Castellarin-Cudia, C. ; Xie, R. ; D’Arsié, L. ; Makaryan, T. ; Sugime, H. ; Fernandez, S.E. ; Cepek, C. ; Robertson, J.</creator><creatorcontrib>Esconjauregui, S. ; Bhardwaj, S. ; Yang, J. ; Castellarin-Cudia, C. ; Xie, R. ; D’Arsié, L. ; Makaryan, T. ; Sugime, H. ; Fernandez, S.E. ; Cepek, C. ; Robertson, J.</creatorcontrib><description>We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.02.026</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon ; Catalysis ; Catalysts ; Chemistry ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Forests ; Fullerenes and related materials; diamonds, graphite ; General and physical chemistry ; Materials science ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotubes ; Oxides ; Physics ; Specific materials ; Stability ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Titanium nitride</subject><ispartof>Carbon (New York), 2014-07, Vol.73, p.13-24</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</citedby><cites>FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esconjauregui, S.</creatorcontrib><creatorcontrib>Bhardwaj, S.</creatorcontrib><creatorcontrib>Yang, J.</creatorcontrib><creatorcontrib>Castellarin-Cudia, C.</creatorcontrib><creatorcontrib>Xie, R.</creatorcontrib><creatorcontrib>D’Arsié, L.</creatorcontrib><creatorcontrib>Makaryan, T.</creatorcontrib><creatorcontrib>Sugime, H.</creatorcontrib><creatorcontrib>Fernandez, S.E.</creatorcontrib><creatorcontrib>Cepek, C.</creatorcontrib><creatorcontrib>Robertson, J.</creatorcontrib><title>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</title><title>Carbon (New York)</title><description>We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.</description><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General and physical chemistry</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Oxides</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Stability</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Titanium nitride</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7-Aw-5CF56TCWdj_YgyODHwoIXPYfqdLXbY28yJmll_70ZZ_EoFBRVPG-91MvYSxB7EGDeHPcB85jiXgro90K2Mo_YDpxVnXIDPGY7IYTrjJTqKXtWyrGNvYN-x_zhr5JHjKluI_HvOf2ut7ytQorTFmrK5S2_jvO6UQzE08zrLfGynU4pV15qbsyWiWOceMCK632pDVnCj0ilPGdPZlwLvXjoV-zbxw9fD5-7my-frg_vb7qgzFA7DYrQoQYChUNPkwXQ0s3BDgNpdMaAVrMlBCN0GK22th-lHEUvsBGkrtjry91TTj83KtXfLSXQumKktBUPWg_GDhpcQ_sLGnIqJdPsT3m5w3zvQfhznv7oL3n6c55eyFamyV49OGAJuM4ZY1jKP610yho5iMa9u3DU3v21UPYlLOfopiVTqH5Ky_-N_gDePI4m</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Esconjauregui, S.</creator><creator>Bhardwaj, S.</creator><creator>Yang, J.</creator><creator>Castellarin-Cudia, C.</creator><creator>Xie, R.</creator><creator>D’Arsié, L.</creator><creator>Makaryan, T.</creator><creator>Sugime, H.</creator><creator>Fernandez, S.E.</creator><creator>Cepek, C.</creator><creator>Robertson, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</title><author>Esconjauregui, S. ; Bhardwaj, S. ; Yang, J. ; Castellarin-Cudia, C. ; Xie, R. ; D’Arsié, L. ; Makaryan, T. ; Sugime, H. ; Fernandez, S.E. ; Cepek, C. ; Robertson, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General and physical chemistry</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Oxides</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Stability</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esconjauregui, S.</creatorcontrib><creatorcontrib>Bhardwaj, S.</creatorcontrib><creatorcontrib>Yang, J.</creatorcontrib><creatorcontrib>Castellarin-Cudia, C.</creatorcontrib><creatorcontrib>Xie, R.</creatorcontrib><creatorcontrib>D’Arsié, L.</creatorcontrib><creatorcontrib>Makaryan, T.</creatorcontrib><creatorcontrib>Sugime, H.</creatorcontrib><creatorcontrib>Fernandez, S.E.</creatorcontrib><creatorcontrib>Cepek, C.</creatorcontrib><creatorcontrib>Robertson, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esconjauregui, S.</au><au>Bhardwaj, S.</au><au>Yang, J.</au><au>Castellarin-Cudia, C.</au><au>Xie, R.</au><au>D’Arsié, L.</au><au>Makaryan, T.</au><au>Sugime, H.</au><au>Fernandez, S.E.</au><au>Cepek, C.</au><au>Robertson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</atitle><jtitle>Carbon (New York)</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>73</volume><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.02.026</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2014-07, Vol.73, p.13-24 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559679518 |
source | Elsevier |
subjects | Carbon Catalysis Catalysts Chemistry Cross-disciplinary physics: materials science rheology Exact sciences and technology Forests Fullerenes and related materials diamonds, graphite General and physical chemistry Materials science Nanoparticles Nanoscale materials and structures: fabrication and characterization Nanostructure Nanotubes Oxides Physics Specific materials Stability Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Titanium nitride |
title | Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20growth%20on%20conductors:%20Influence%20of%20the%20support%20structure%20and%20catalyst%20thickness&rft.jtitle=Carbon%20(New%20York)&rft.au=Esconjauregui,%20S.&rft.date=2014-07-01&rft.volume=73&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2014.02.026&rft_dat=%3Cproquest_cross%3E1559679518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559679518&rft_id=info:pmid/&rfr_iscdi=true |