Loading…

Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness

We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi f...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2014-07, Vol.73, p.13-24
Main Authors: Esconjauregui, S., Bhardwaj, S., Yang, J., Castellarin-Cudia, C., Xie, R., D’Arsié, L., Makaryan, T., Sugime, H., Fernandez, S.E., Cepek, C., Robertson, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3
cites cdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3
container_end_page 24
container_issue
container_start_page 13
container_title Carbon (New York)
container_volume 73
creator Esconjauregui, S.
Bhardwaj, S.
Yang, J.
Castellarin-Cudia, C.
Xie, R.
D’Arsié, L.
Makaryan, T.
Sugime, H.
Fernandez, S.E.
Cepek, C.
Robertson, J.
description We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.
doi_str_mv 10.1016/j.carbon.2014.02.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559679518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314001535</els_id><sourcerecordid>1559679518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-Aw-5CF56TCWdj_YgyODHwoIXPYfqdLXbY28yJmll_70ZZ_EoFBRVPG-91MvYSxB7EGDeHPcB85jiXgro90K2Mo_YDpxVnXIDPGY7IYTrjJTqKXtWyrGNvYN-x_zhr5JHjKluI_HvOf2ut7ytQorTFmrK5S2_jvO6UQzE08zrLfGynU4pV15qbsyWiWOceMCK632pDVnCj0ilPGdPZlwLvXjoV-zbxw9fD5-7my-frg_vb7qgzFA7DYrQoQYChUNPkwXQ0s3BDgNpdMaAVrMlBCN0GK22th-lHEUvsBGkrtjry91TTj83KtXfLSXQumKktBUPWg_GDhpcQ_sLGnIqJdPsT3m5w3zvQfhznv7oL3n6c55eyFamyV49OGAJuM4ZY1jKP610yho5iMa9u3DU3v21UPYlLOfopiVTqH5Ky_-N_gDePI4m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559679518</pqid></control><display><type>article</type><title>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</title><source>Elsevier</source><creator>Esconjauregui, S. ; Bhardwaj, S. ; Yang, J. ; Castellarin-Cudia, C. ; Xie, R. ; D’Arsié, L. ; Makaryan, T. ; Sugime, H. ; Fernandez, S.E. ; Cepek, C. ; Robertson, J.</creator><creatorcontrib>Esconjauregui, S. ; Bhardwaj, S. ; Yang, J. ; Castellarin-Cudia, C. ; Xie, R. ; D’Arsié, L. ; Makaryan, T. ; Sugime, H. ; Fernandez, S.E. ; Cepek, C. ; Robertson, J.</creatorcontrib><description>We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.02.026</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon ; Catalysis ; Catalysts ; Chemistry ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Forests ; Fullerenes and related materials; diamonds, graphite ; General and physical chemistry ; Materials science ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotubes ; Oxides ; Physics ; Specific materials ; Stability ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Titanium nitride</subject><ispartof>Carbon (New York), 2014-07, Vol.73, p.13-24</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</citedby><cites>FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28376290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esconjauregui, S.</creatorcontrib><creatorcontrib>Bhardwaj, S.</creatorcontrib><creatorcontrib>Yang, J.</creatorcontrib><creatorcontrib>Castellarin-Cudia, C.</creatorcontrib><creatorcontrib>Xie, R.</creatorcontrib><creatorcontrib>D’Arsié, L.</creatorcontrib><creatorcontrib>Makaryan, T.</creatorcontrib><creatorcontrib>Sugime, H.</creatorcontrib><creatorcontrib>Fernandez, S.E.</creatorcontrib><creatorcontrib>Cepek, C.</creatorcontrib><creatorcontrib>Robertson, J.</creatorcontrib><title>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</title><title>Carbon (New York)</title><description>We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.</description><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General and physical chemistry</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Oxides</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Stability</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Titanium nitride</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7-Aw-5CF56TCWdj_YgyODHwoIXPYfqdLXbY28yJmll_70ZZ_EoFBRVPG-91MvYSxB7EGDeHPcB85jiXgro90K2Mo_YDpxVnXIDPGY7IYTrjJTqKXtWyrGNvYN-x_zhr5JHjKluI_HvOf2ut7ytQorTFmrK5S2_jvO6UQzE08zrLfGynU4pV15qbsyWiWOceMCK632pDVnCj0ilPGdPZlwLvXjoV-zbxw9fD5-7my-frg_vb7qgzFA7DYrQoQYChUNPkwXQ0s3BDgNpdMaAVrMlBCN0GK22th-lHEUvsBGkrtjry91TTj83KtXfLSXQumKktBUPWg_GDhpcQ_sLGnIqJdPsT3m5w3zvQfhznv7oL3n6c55eyFamyV49OGAJuM4ZY1jKP610yho5iMa9u3DU3v21UPYlLOfopiVTqH5Ky_-N_gDePI4m</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Esconjauregui, S.</creator><creator>Bhardwaj, S.</creator><creator>Yang, J.</creator><creator>Castellarin-Cudia, C.</creator><creator>Xie, R.</creator><creator>D’Arsié, L.</creator><creator>Makaryan, T.</creator><creator>Sugime, H.</creator><creator>Fernandez, S.E.</creator><creator>Cepek, C.</creator><creator>Robertson, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</title><author>Esconjauregui, S. ; Bhardwaj, S. ; Yang, J. ; Castellarin-Cudia, C. ; Xie, R. ; D’Arsié, L. ; Makaryan, T. ; Sugime, H. ; Fernandez, S.E. ; Cepek, C. ; Robertson, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General and physical chemistry</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Oxides</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Stability</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esconjauregui, S.</creatorcontrib><creatorcontrib>Bhardwaj, S.</creatorcontrib><creatorcontrib>Yang, J.</creatorcontrib><creatorcontrib>Castellarin-Cudia, C.</creatorcontrib><creatorcontrib>Xie, R.</creatorcontrib><creatorcontrib>D’Arsié, L.</creatorcontrib><creatorcontrib>Makaryan, T.</creatorcontrib><creatorcontrib>Sugime, H.</creatorcontrib><creatorcontrib>Fernandez, S.E.</creatorcontrib><creatorcontrib>Cepek, C.</creatorcontrib><creatorcontrib>Robertson, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esconjauregui, S.</au><au>Bhardwaj, S.</au><au>Yang, J.</au><au>Castellarin-Cudia, C.</au><au>Xie, R.</au><au>D’Arsié, L.</au><au>Makaryan, T.</au><au>Sugime, H.</au><au>Fernandez, S.E.</au><au>Cepek, C.</au><au>Robertson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness</atitle><jtitle>Carbon (New York)</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>73</volume><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>We investigate the formation and stability of Fe nanoparticles on TiN and poly-crystalline PtSi films, and their ability to grow carbon nanotubes forests. Using different-microstructure films, coated with or without their native oxides, we show that, upon purely-thermal catalyst pretreatment, PtSi favours the formation of homogenously sized nanoparticles and forest growth, partly due to its low surface energy. TiN, in contrast, leads to much less controllable processes and only when coated with its native oxide, or with thick catalyst films, yields large diameter nanotube forests. The microstructure of the material can dramatically limit catalyst diffusion into the bulk of the support during nanotube growth. These results allow us to establish the general behaviour expected for nanotube growth on any conductive materials.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.02.026</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2014-07, Vol.73, p.13-24
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1559679518
source Elsevier
subjects Carbon
Catalysis
Catalysts
Chemistry
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Forests
Fullerenes and related materials
diamonds, graphite
General and physical chemistry
Materials science
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotubes
Oxides
Physics
Specific materials
Stability
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Titanium nitride
title Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20growth%20on%20conductors:%20Influence%20of%20the%20support%20structure%20and%20catalyst%20thickness&rft.jtitle=Carbon%20(New%20York)&rft.au=Esconjauregui,%20S.&rft.date=2014-07-01&rft.volume=73&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2014.02.026&rft_dat=%3Cproquest_cross%3E1559679518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-513ea8a51e13a94ed711528fc799e5a866153f7ea1605cb75774b22b040a99ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559679518&rft_id=info:pmid/&rfr_iscdi=true