Loading…

Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases

Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and th...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2014-07, Vol.24 (25), p.4005-4014
Main Authors: Zhang, Yuxi, Kim, Jae Jin, Chen, Di, Tuller, Harry L., Rutledge, Gregory C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03
cites cdi_FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03
container_end_page 4014
container_issue 25
container_start_page 4005
container_title Advanced functional materials
container_volume 24
creator Zhang, Yuxi
Kim, Jae Jin
Chen, Di
Tuller, Harry L.
Rutledge, Gregory C.
description Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers. Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.
doi_str_mv 10.1002/adfm.201400185
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559683690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559683690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</originalsourceid><addsrcrecordid>eNqFkEFPwjAUgBejiYhePffoZdh2W7cdCQiYABqHwVvz2N6guq3YgsLRf-4mhnjz0jbp972XfI5zzWiHUcpvIcvLDqfMp5RFwYnTYoIJ16M8Oj2-2cu5c2Hta42Eoee3nK-7AtON0Xa9rcijLvZQqUJVSAZqgcYSsGSklqtiTxKsrNqoDyRPWpdkhuUaDWy2BklvhaUyaJX9-W9IXbu5NqRblrpSQKDKyFTVi5ZYkb7SO5UhGYJFe-mc5VBYvPq9287z4G7WG7njh-F9rzt2Uz-kgYvRggMDjuBFHEOx4DmIIKbIIoZC0DwNQp_GkGXopzwQPuUhLHicUT9rTq_t3Bzmro1-36LdyFLZFIsCKtRbK1kQxCLyRNygnQOa1mGswVyujSrB7CWjsmktm9by2LoW4oPwqQrc_0PLbn8w-eu6B7euh7ujC-ZNitALAzmfDmWSJFOasLmceN8dV5Se</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559683690</pqid></control><display><type>article</type><title>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</title><source>Wiley</source><creator>Zhang, Yuxi ; Kim, Jae Jin ; Chen, Di ; Tuller, Harry L. ; Rutledge, Gregory C.</creator><creatorcontrib>Zhang, Yuxi ; Kim, Jae Jin ; Chen, Di ; Tuller, Harry L. ; Rutledge, Gregory C.</creatorcontrib><description>Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers. Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201400185</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Ammonia ; Detection ; Electrospinning ; Fibers ; Gas sensors ; nanofibers ; Nitrogen dioxide ; polyaniline ; Response time ; Sensors</subject><ispartof>Advanced functional materials, 2014-07, Vol.24 (25), p.4005-4014</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</citedby><cites>FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yuxi</creatorcontrib><creatorcontrib>Kim, Jae Jin</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Tuller, Harry L.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><title>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers. Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.</description><subject>Ammonia</subject><subject>Detection</subject><subject>Electrospinning</subject><subject>Fibers</subject><subject>Gas sensors</subject><subject>nanofibers</subject><subject>Nitrogen dioxide</subject><subject>polyaniline</subject><subject>Response time</subject><subject>Sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUgBejiYhePffoZdh2W7cdCQiYABqHwVvz2N6guq3YgsLRf-4mhnjz0jbp972XfI5zzWiHUcpvIcvLDqfMp5RFwYnTYoIJ16M8Oj2-2cu5c2Hta42Eoee3nK-7AtON0Xa9rcijLvZQqUJVSAZqgcYSsGSklqtiTxKsrNqoDyRPWpdkhuUaDWy2BklvhaUyaJX9-W9IXbu5NqRblrpSQKDKyFTVi5ZYkb7SO5UhGYJFe-mc5VBYvPq9287z4G7WG7njh-F9rzt2Uz-kgYvRggMDjuBFHEOx4DmIIKbIIoZC0DwNQp_GkGXopzwQPuUhLHicUT9rTq_t3Bzmro1-36LdyFLZFIsCKtRbK1kQxCLyRNygnQOa1mGswVyujSrB7CWjsmktm9by2LoW4oPwqQrc_0PLbn8w-eu6B7euh7ujC-ZNitALAzmfDmWSJFOasLmceN8dV5Se</recordid><startdate>20140702</startdate><enddate>20140702</enddate><creator>Zhang, Yuxi</creator><creator>Kim, Jae Jin</creator><creator>Chen, Di</creator><creator>Tuller, Harry L.</creator><creator>Rutledge, Gregory C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140702</creationdate><title>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</title><author>Zhang, Yuxi ; Kim, Jae Jin ; Chen, Di ; Tuller, Harry L. ; Rutledge, Gregory C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ammonia</topic><topic>Detection</topic><topic>Electrospinning</topic><topic>Fibers</topic><topic>Gas sensors</topic><topic>nanofibers</topic><topic>Nitrogen dioxide</topic><topic>polyaniline</topic><topic>Response time</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuxi</creatorcontrib><creatorcontrib>Kim, Jae Jin</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Tuller, Harry L.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuxi</au><au>Kim, Jae Jin</au><au>Chen, Di</au><au>Tuller, Harry L.</au><au>Rutledge, Gregory C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-07-02</date><risdate>2014</risdate><volume>24</volume><issue>25</issue><spage>4005</spage><epage>4014</epage><pages>4005-4014</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers. Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201400185</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2014-07, Vol.24 (25), p.4005-4014
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1559683690
source Wiley
subjects Ammonia
Detection
Electrospinning
Fibers
Gas sensors
nanofibers
Nitrogen dioxide
polyaniline
Response time
Sensors
title Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Polyaniline%20Fibers%20as%20Highly%20Sensitive%20Room%20Temperature%20Chemiresistive%20Sensors%20for%20Ammonia%20and%20Nitrogen%20Dioxide%20Gases&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Yuxi&rft.date=2014-07-02&rft.volume=24&rft.issue=25&rft.spage=4005&rft.epage=4014&rft.pages=4005-4014&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201400185&rft_dat=%3Cproquest_cross%3E1559683690%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559683690&rft_id=info:pmid/&rfr_iscdi=true