Loading…
Zassenhaus Conjecture for cyclic‐by‐abelian groups
Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other...
Saved in:
Published in: | Journal of the London Mathematical Society 2013-08, Vol.88 (1), p.65-78 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333 |
---|---|
cites | |
container_end_page | 78 |
container_issue | 1 |
container_start_page | 65 |
container_title | Journal of the London Mathematical Society |
container_volume | 88 |
creator | Caicedo, Mauricio Margolis, Leo del Río, Ángel |
description | Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups. |
doi_str_mv | 10.1112/jlms/jdt002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559699579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559699579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333</originalsourceid><addsrcrecordid>eNp90L1OwzAQwHELgUQpTLxARiQU6svFdj2iik8VMQALi-VcbUiUJsVuhLLxCDwjT0KqMLPcSaefbvgzdgr8AgCyWVWv46xabTnP9tgEcqlTpQTfZ5PhkqcSuDpkRzFWnAMCzyZMvtoYXfNuu5gs2qZytO2CS3wbEuqpLunn67voh2ELV5e2Sd5C223iMTvwto7u5G9P2cv11fPiNl0-3twtLpcpYS5EKmiOqFagPCpOAKgol2S54LmaW0TKioy0xiITRH6eS1AFCkXegl9JRJyys_HvJrQfnYtbsy4jubq2jWu7aEAILbUWSg_0fKQU2hiD82YTyrUNvQFudnXMro4Z6wwaRv1Z1q7_j5r75cMT51LgLzspalM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559699579</pqid></control><display><type>article</type><title>Zassenhaus Conjecture for cyclic‐by‐abelian groups</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Caicedo, Mauricio ; Margolis, Leo ; del Río, Ángel</creator><creatorcontrib>Caicedo, Mauricio ; Margolis, Leo ; del Río, Ángel</creatorcontrib><description>Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdt002</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Algebra ; Augmentation ; Conjugates ; Group theory ; Integrals ; Mathematical analysis ; Rings (mathematics) ; Torsion</subject><ispartof>Journal of the London Mathematical Society, 2013-08, Vol.88 (1), p.65-78</ispartof><rights>2013 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Caicedo, Mauricio</creatorcontrib><creatorcontrib>Margolis, Leo</creatorcontrib><creatorcontrib>del Río, Ángel</creatorcontrib><title>Zassenhaus Conjecture for cyclic‐by‐abelian groups</title><title>Journal of the London Mathematical Society</title><description>Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.</description><subject>Algebra</subject><subject>Augmentation</subject><subject>Conjugates</subject><subject>Group theory</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Rings (mathematics)</subject><subject>Torsion</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQwHELgUQpTLxARiQU6svFdj2iik8VMQALi-VcbUiUJsVuhLLxCDwjT0KqMLPcSaefbvgzdgr8AgCyWVWv46xabTnP9tgEcqlTpQTfZ5PhkqcSuDpkRzFWnAMCzyZMvtoYXfNuu5gs2qZytO2CS3wbEuqpLunn67voh2ELV5e2Sd5C223iMTvwto7u5G9P2cv11fPiNl0-3twtLpcpYS5EKmiOqFagPCpOAKgol2S54LmaW0TKioy0xiITRH6eS1AFCkXegl9JRJyys_HvJrQfnYtbsy4jubq2jWu7aEAILbUWSg_0fKQU2hiD82YTyrUNvQFudnXMro4Z6wwaRv1Z1q7_j5r75cMT51LgLzspalM</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Caicedo, Mauricio</creator><creator>Margolis, Leo</creator><creator>del Río, Ángel</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>Zassenhaus Conjecture for cyclic‐by‐abelian groups</title><author>Caicedo, Mauricio ; Margolis, Leo ; del Río, Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Augmentation</topic><topic>Conjugates</topic><topic>Group theory</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Rings (mathematics)</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caicedo, Mauricio</creatorcontrib><creatorcontrib>Margolis, Leo</creatorcontrib><creatorcontrib>del Río, Ángel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caicedo, Mauricio</au><au>Margolis, Leo</au><au>del Río, Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zassenhaus Conjecture for cyclic‐by‐abelian groups</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2013-08</date><risdate>2013</risdate><volume>88</volume><issue>1</issue><spage>65</spage><epage>78</epage><pages>65-78</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdt002</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2013-08, Vol.88 (1), p.65-78 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559699579 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algebra Augmentation Conjugates Group theory Integrals Mathematical analysis Rings (mathematics) Torsion |
title | Zassenhaus Conjecture for cyclic‐by‐abelian groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zassenhaus%20Conjecture%20for%20cyclic%E2%80%90by%E2%80%90abelian%20groups&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Caicedo,%20Mauricio&rft.date=2013-08&rft.volume=88&rft.issue=1&rft.spage=65&rft.epage=78&rft.pages=65-78&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdt002&rft_dat=%3Cproquest_cross%3E1559699579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559699579&rft_id=info:pmid/&rfr_iscdi=true |