Loading…

Zassenhaus Conjecture for cyclic‐by‐abelian groups

Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society 2013-08, Vol.88 (1), p.65-78
Main Authors: Caicedo, Mauricio, Margolis, Leo, del Río, Ángel
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333
cites
container_end_page 78
container_issue 1
container_start_page 65
container_title Journal of the London Mathematical Society
container_volume 88
creator Caicedo, Mauricio
Margolis, Leo
del Río, Ángel
description Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.
doi_str_mv 10.1112/jlms/jdt002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559699579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559699579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333</originalsourceid><addsrcrecordid>eNp90L1OwzAQwHELgUQpTLxARiQU6svFdj2iik8VMQALi-VcbUiUJsVuhLLxCDwjT0KqMLPcSaefbvgzdgr8AgCyWVWv46xabTnP9tgEcqlTpQTfZ5PhkqcSuDpkRzFWnAMCzyZMvtoYXfNuu5gs2qZytO2CS3wbEuqpLunn67voh2ELV5e2Sd5C223iMTvwto7u5G9P2cv11fPiNl0-3twtLpcpYS5EKmiOqFagPCpOAKgol2S54LmaW0TKioy0xiITRH6eS1AFCkXegl9JRJyys_HvJrQfnYtbsy4jubq2jWu7aEAILbUWSg_0fKQU2hiD82YTyrUNvQFudnXMro4Z6wwaRv1Z1q7_j5r75cMT51LgLzspalM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559699579</pqid></control><display><type>article</type><title>Zassenhaus Conjecture for cyclic‐by‐abelian groups</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Caicedo, Mauricio ; Margolis, Leo ; del Río, Ángel</creator><creatorcontrib>Caicedo, Mauricio ; Margolis, Leo ; del Río, Ángel</creatorcontrib><description>Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdt002</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Algebra ; Augmentation ; Conjugates ; Group theory ; Integrals ; Mathematical analysis ; Rings (mathematics) ; Torsion</subject><ispartof>Journal of the London Mathematical Society, 2013-08, Vol.88 (1), p.65-78</ispartof><rights>2013 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Caicedo, Mauricio</creatorcontrib><creatorcontrib>Margolis, Leo</creatorcontrib><creatorcontrib>del Río, Ángel</creatorcontrib><title>Zassenhaus Conjecture for cyclic‐by‐abelian groups</title><title>Journal of the London Mathematical Society</title><description>Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.</description><subject>Algebra</subject><subject>Augmentation</subject><subject>Conjugates</subject><subject>Group theory</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Rings (mathematics)</subject><subject>Torsion</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAQwHELgUQpTLxARiQU6svFdj2iik8VMQALi-VcbUiUJsVuhLLxCDwjT0KqMLPcSaefbvgzdgr8AgCyWVWv46xabTnP9tgEcqlTpQTfZ5PhkqcSuDpkRzFWnAMCzyZMvtoYXfNuu5gs2qZytO2CS3wbEuqpLunn67voh2ELV5e2Sd5C223iMTvwto7u5G9P2cv11fPiNl0-3twtLpcpYS5EKmiOqFagPCpOAKgol2S54LmaW0TKioy0xiITRH6eS1AFCkXegl9JRJyys_HvJrQfnYtbsy4jubq2jWu7aEAILbUWSg_0fKQU2hiD82YTyrUNvQFudnXMro4Z6wwaRv1Z1q7_j5r75cMT51LgLzspalM</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Caicedo, Mauricio</creator><creator>Margolis, Leo</creator><creator>del Río, Ángel</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>Zassenhaus Conjecture for cyclic‐by‐abelian groups</title><author>Caicedo, Mauricio ; Margolis, Leo ; del Río, Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Augmentation</topic><topic>Conjugates</topic><topic>Group theory</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Rings (mathematics)</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caicedo, Mauricio</creatorcontrib><creatorcontrib>Margolis, Leo</creatorcontrib><creatorcontrib>del Río, Ángel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caicedo, Mauricio</au><au>Margolis, Leo</au><au>del Río, Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zassenhaus Conjecture for cyclic‐by‐abelian groups</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2013-08</date><risdate>2013</risdate><volume>88</volume><issue>1</issue><spage>65</spage><epage>78</epage><pages>65-78</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Zassenhaus Conjecture for torsion units states that every augmentation 1 torsion unit of the integral group ring of a finite group G is conjugate to an element of G in the units of the rational group algebra ℚ G. This conjecture has been proved for nilpotent groups, metacyclic groups and some other families of groups. It has been also proved for some special groups. We prove the conjecture for cyclic‐by‐abelian groups.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdt002</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2013-08, Vol.88 (1), p.65-78
issn 0024-6107
1469-7750
language eng
recordid cdi_proquest_miscellaneous_1559699579
source Wiley-Blackwell Read & Publish Collection
subjects Algebra
Augmentation
Conjugates
Group theory
Integrals
Mathematical analysis
Rings (mathematics)
Torsion
title Zassenhaus Conjecture for cyclic‐by‐abelian groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zassenhaus%20Conjecture%20for%20cyclic%E2%80%90by%E2%80%90abelian%20groups&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Caicedo,%20Mauricio&rft.date=2013-08&rft.volume=88&rft.issue=1&rft.spage=65&rft.epage=78&rft.pages=65-78&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdt002&rft_dat=%3Cproquest_cross%3E1559699579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3455-5c8337d17f370c1137c46ca050478a33c2b2c993b25ccf84617b357cfa1fd6333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1559699579&rft_id=info:pmid/&rfr_iscdi=true