Loading…
Infinite partitions and Rokhlin towers
We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0...
Saved in:
Published in: | Ergodic theory and dynamical systems 2012-04, Vol.32 (2), p.707-738 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43 |
container_end_page | 738 |
container_issue | 2 |
container_start_page | 707 |
container_title | Ergodic theory and dynamical systems |
container_volume | 32 |
creator | KALIKOW, STEVEN |
description | We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right. |
doi_str_mv | 10.1017/S0143385711000381 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559706962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385711000381</cupid><sourcerecordid>1559706962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AIG5Gc_OaZCnFR6Eg-FgPaZpo6jSpyRTx35uhXYji6i7Od849HIROAV8ChubqCQOjVPIGAGNMJeyhETChasag2UejQa4H_RAd5bwcGGj4CJ1Pg_PB97Za69T73seQKx0W1WN8f-t8qPr4aVM-RgdOd9me7O4YvdzePE_u69nD3XRyPasN5bivWWMkdsQoUz4RIo0UyjnBuHNA1HwuSjPKTDmUCso0ExZbKaTEQii7YHSMLra56xQ_Njb37cpnY7tOBxs3uQXOVYOFEqSgZ7_QZdykUNq1gCknjAg6ULClTIo5J-vadfIrnb4K1A7LtX-WKx668-jVPPnFq_0Z_Z_rG3F0bDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035242632</pqid></control><display><type>article</type><title>Infinite partitions and Rokhlin towers</title><source>Cambridge University Press</source><creator>KALIKOW, STEVEN</creator><creatorcontrib>KALIKOW, STEVEN</creatorcontrib><description>We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385711000381</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Columns (process) ; Dynamical systems ; Entropy ; Integers ; Martingales ; Mathematics ; Partitions ; Proof theory ; Theorems ; Towers ; Transformations</subject><ispartof>Ergodic theory and dynamical systems, 2012-04, Vol.32 (2), p.707-738</ispartof><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</citedby><cites>FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385711000381/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>KALIKOW, STEVEN</creatorcontrib><title>Infinite partitions and Rokhlin towers</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.</description><subject>Columns (process)</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Integers</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Partitions</subject><subject>Proof theory</subject><subject>Theorems</subject><subject>Towers</subject><subject>Transformations</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AIG5Gc_OaZCnFR6Eg-FgPaZpo6jSpyRTx35uhXYji6i7Od849HIROAV8ChubqCQOjVPIGAGNMJeyhETChasag2UejQa4H_RAd5bwcGGj4CJ1Pg_PB97Za69T73seQKx0W1WN8f-t8qPr4aVM-RgdOd9me7O4YvdzePE_u69nD3XRyPasN5bivWWMkdsQoUz4RIo0UyjnBuHNA1HwuSjPKTDmUCso0ExZbKaTEQii7YHSMLra56xQ_Njb37cpnY7tOBxs3uQXOVYOFEqSgZ7_QZdykUNq1gCknjAg6ULClTIo5J-vadfIrnb4K1A7LtX-WKx668-jVPPnFq_0Z_Z_rG3F0bDE</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>KALIKOW, STEVEN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201204</creationdate><title>Infinite partitions and Rokhlin towers</title><author>KALIKOW, STEVEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Columns (process)</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Integers</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Partitions</topic><topic>Proof theory</topic><topic>Theorems</topic><topic>Towers</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KALIKOW, STEVEN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KALIKOW, STEVEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite partitions and Rokhlin towers</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2012-04</date><risdate>2012</risdate><volume>32</volume><issue>2</issue><spage>707</spage><epage>738</epage><pages>707-738</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385711000381</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2012-04, Vol.32 (2), p.707-738 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559706962 |
source | Cambridge University Press |
subjects | Columns (process) Dynamical systems Entropy Integers Martingales Mathematics Partitions Proof theory Theorems Towers Transformations |
title | Infinite partitions and Rokhlin towers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20partitions%20and%20Rokhlin%20towers&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=KALIKOW,%20STEVEN&rft.date=2012-04&rft.volume=32&rft.issue=2&rft.spage=707&rft.epage=738&rft.pages=707-738&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385711000381&rft_dat=%3Cproquest_cross%3E1559706962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1035242632&rft_id=info:pmid/&rft_cupid=10_1017_S0143385711000381&rfr_iscdi=true |