Loading…

Infinite partitions and Rokhlin towers

We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0...

Full description

Saved in:
Bibliographic Details
Published in:Ergodic theory and dynamical systems 2012-04, Vol.32 (2), p.707-738
Main Author: KALIKOW, STEVEN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43
cites cdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43
container_end_page 738
container_issue 2
container_start_page 707
container_title Ergodic theory and dynamical systems
container_volume 32
creator KALIKOW, STEVEN
description We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.
doi_str_mv 10.1017/S0143385711000381
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559706962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385711000381</cupid><sourcerecordid>1559706962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AIG5Gc_OaZCnFR6Eg-FgPaZpo6jSpyRTx35uhXYji6i7Od849HIROAV8ChubqCQOjVPIGAGNMJeyhETChasag2UejQa4H_RAd5bwcGGj4CJ1Pg_PB97Za69T73seQKx0W1WN8f-t8qPr4aVM-RgdOd9me7O4YvdzePE_u69nD3XRyPasN5bivWWMkdsQoUz4RIo0UyjnBuHNA1HwuSjPKTDmUCso0ExZbKaTEQii7YHSMLra56xQ_Njb37cpnY7tOBxs3uQXOVYOFEqSgZ7_QZdykUNq1gCknjAg6ULClTIo5J-vadfIrnb4K1A7LtX-WKx668-jVPPnFq_0Z_Z_rG3F0bDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035242632</pqid></control><display><type>article</type><title>Infinite partitions and Rokhlin towers</title><source>Cambridge University Press</source><creator>KALIKOW, STEVEN</creator><creatorcontrib>KALIKOW, STEVEN</creatorcontrib><description>We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385711000381</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Columns (process) ; Dynamical systems ; Entropy ; Integers ; Martingales ; Mathematics ; Partitions ; Proof theory ; Theorems ; Towers ; Transformations</subject><ispartof>Ergodic theory and dynamical systems, 2012-04, Vol.32 (2), p.707-738</ispartof><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</citedby><cites>FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385711000381/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,72703</link.rule.ids></links><search><creatorcontrib>KALIKOW, STEVEN</creatorcontrib><title>Infinite partitions and Rokhlin towers</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.</description><subject>Columns (process)</subject><subject>Dynamical systems</subject><subject>Entropy</subject><subject>Integers</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Partitions</subject><subject>Proof theory</subject><subject>Theorems</subject><subject>Towers</subject><subject>Transformations</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AIG5Gc_OaZCnFR6Eg-FgPaZpo6jSpyRTx35uhXYji6i7Od849HIROAV8ChubqCQOjVPIGAGNMJeyhETChasag2UejQa4H_RAd5bwcGGj4CJ1Pg_PB97Za69T73seQKx0W1WN8f-t8qPr4aVM-RgdOd9me7O4YvdzePE_u69nD3XRyPasN5bivWWMkdsQoUz4RIo0UyjnBuHNA1HwuSjPKTDmUCso0ExZbKaTEQii7YHSMLra56xQ_Njb37cpnY7tOBxs3uQXOVYOFEqSgZ7_QZdykUNq1gCknjAg6ULClTIo5J-vadfIrnb4K1A7LtX-WKx668-jVPPnFq_0Z_Z_rG3F0bDE</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>KALIKOW, STEVEN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201204</creationdate><title>Infinite partitions and Rokhlin towers</title><author>KALIKOW, STEVEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Columns (process)</topic><topic>Dynamical systems</topic><topic>Entropy</topic><topic>Integers</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Partitions</topic><topic>Proof theory</topic><topic>Theorems</topic><topic>Towers</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KALIKOW, STEVEN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KALIKOW, STEVEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite partitions and Rokhlin towers</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2012-04</date><risdate>2012</risdate><volume>32</volume><issue>2</issue><spage>707</spage><epage>738</epage><pages>707-738</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We find a countable partition P on a Lebesgue space, labeled {1,2,3,…}, for any non-periodic measure-preserving transformation T such that P generates T and, for the T,P process, if you see an n on time −1 then you only have to look at times −n,1−n,…−1 to know the positive integer i to put at time 0 . We alter that proof to extend every non-periodic T to a uniform martingale (i.e. continuous g function) on an infinite alphabet. If T has positive entropy and the weak Pinsker property, this extension can be made to be an isomorphism. We pose remaining questions on uniform martingales. In the process of proving the uniform martingale result we make a complete analysis of Rokhlin towers which is of interest in and of itself. We also give an example that looks something like an independent identically distributed process on ℤ2 when you read from right to left but where each column determines the next if you read left to right.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385711000381</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2012-04, Vol.32 (2), p.707-738
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_miscellaneous_1559706962
source Cambridge University Press
subjects Columns (process)
Dynamical systems
Entropy
Integers
Martingales
Mathematics
Partitions
Proof theory
Theorems
Towers
Transformations
title Infinite partitions and Rokhlin towers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20partitions%20and%20Rokhlin%20towers&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=KALIKOW,%20STEVEN&rft.date=2012-04&rft.volume=32&rft.issue=2&rft.spage=707&rft.epage=738&rft.pages=707-738&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385711000381&rft_dat=%3Cproquest_cross%3E1559706962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-47c80f2c9c857228c869ff645ff129bb603834c60333634a46e0e86880669ed43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1035242632&rft_id=info:pmid/&rft_cupid=10_1017_S0143385711000381&rfr_iscdi=true