Loading…
Modified likelihood ratio tests in heteroskedastic multivariate regression models with measurement error
In this paper, we develop modified versions of the likelihood ratio test for multivariate heteroskedastic errors-in-variables regression models. The error terms are allowed to follow a multivariate distribution in the elliptical class of distributions, which has the normal distribution as a special...
Saved in:
Published in: | Journal of statistical computation and simulation 2014-10, Vol.84 (10), p.2233-2247 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we develop modified versions of the likelihood ratio test for multivariate heteroskedastic errors-in-variables regression models. The error terms are allowed to follow a multivariate distribution in the elliptical class of distributions, which has the normal distribution as a special case. We derive the Skovgaard-adjusted likelihood ratio statistics, which follow a chi-squared distribution with a high degree of accuracy. We conduct a simulation study and show that the proposed tests display superior finite sample behaviour as compared to the standard likelihood ratio test. We illustrate the usefulness of our results in applied settings using a data set from the WHO MONICA Project on cardiovascular disease. |
---|---|
ISSN: | 0094-9655 1563-5163 |
DOI: | 10.1080/00949655.2013.787691 |