Loading…

Monolayer protected gold nanoparticles: the effect of the headgroup-Au interaction

In this work we present an atomistic simulation study analyzing the effect of ligand molecules on the morphology and crystalline structure of monolayer protected gold nanoparticles (NPs). In particular, we focused on Au NPs covered with alkyl thiolates (-SR), which form a strong covalent bond with t...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2014-08, Vol.16 (30), p.15979-15987
Main Authors: Olmos-Asar, J A, Ludueña, M, Mariscal, M M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work we present an atomistic simulation study analyzing the effect of ligand molecules on the morphology and crystalline structure of monolayer protected gold nanoparticles (NPs). In particular, we focused on Au NPs covered with alkyl thiolates (-SR), which form a strong covalent bond with the Au surface, and alkyl amines (-NH2R), which physisorb onto gold. The atomic interactions between gold and the head groups of ligand molecules were represented by means of a recently developed bond-order potential [Olmos-Asar et al., Phys. Chem. Chem. Phys., 2011, 13, 6500]. We found in the case of strong passivants (i.e. -SR) significant surface damage and/or amorphous-like structures, whereas soft passivants (-NH2R) do not produce almost any distortion in the crystalline structure of the metallic NPs. The enriched coverage degree related to flat surfaces is also discussed. We have also demonstrated that the new semi-empirical potential can reproduce low-coordinated adsorption sites, unlike usual pairwise classical potentials. In general, our simulations provide a direct observation of the structure of ligand protected gold nanoparticles.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp01963f