Loading…
Bayesian common spatial patterns for multi-subject EEG classification
Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feat...
Saved in:
Published in: | Neural networks 2014-09, Vol.57, p.39-50 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793 |
container_end_page | 50 |
container_issue | |
container_start_page | 39 |
container_title | Neural networks |
container_volume | 57 |
creator | Kang, Hyohyeong Choi, Seungjin |
description | Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models. |
doi_str_mv | 10.1016/j.neunet.2014.05.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560106735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608014001117</els_id><sourcerecordid>1560106735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</originalsourceid><addsrcrecordid>eNqN0E1v1DAQgGELgehS-AcI5YLEJenYcfxxQaLVUpAqcWnPluNMJK8SZ_EkSP33dbUL3BCnuTwztl7G3nNoOHB1dWgSbgnXRgCXDXQNcPGC7bjRthbaiJdsB8a2tQIDF-wN0QEAlJHta3YhpBUaJN-x_bV_RIo-VWGZ5yVVdPRr9FNVxoo5UTUuuZq3aY01bf0Bw1rt97dVmDxRHGMoeklv2avRT4TvzvOSPXzd3998q-9-3H6_-XJXB2n5Wvct9F4oCwp08EKPg-l5b4UwgD2GoeedhAFQc9sNABoEV2IcOmV5sKO27SX7dLp7zMvPDWl1c6SA0-QTLhs53ingoHTb_QeVuhPWGChUnmjIC1HG0R1znH1-dBzcc2t3cKfW7rm1g86V1mXtw_mFrZ9x-LP0O24BH8_AU_DTmH0Kkf46oyTY1hT3-eSwpPsVMTsKEVPAIebS2w1L_PdPngB6wJ2B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547529880</pqid></control><display><type>article</type><title>Bayesian common spatial patterns for multi-subject EEG classification</title><source>ScienceDirect Journals</source><creator>Kang, Hyohyeong ; Choi, Seungjin</creator><creatorcontrib>Kang, Hyohyeong ; Choi, Seungjin</creatorcontrib><description>Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.05.012</identifier><identifier>PMID: 24927041</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Bayes Theorem ; Biological and medical sciences ; Brain Waves ; Brain–computer interface ; Central nervous system ; Common spatial patterns ; Computer science; control theory; systems ; Data Interpretation, Statistical ; Data processing. List processing. Character string processing ; EEG classification ; Electrodiagnosis. Electric activity recording ; Electroencephalography - classification ; Electroencephalography - methods ; Electrophysiology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Humans ; Indian Buffet processes ; Investigative techniques, diagnostic techniques (general aspects) ; Linear inference, regression ; Mathematics ; Medical sciences ; Memory organisation. Data processing ; Models, Neurological ; Nervous system ; Nonparametric Bayesian methods ; Probability and statistics ; Sciences and techniques of general use ; Software ; Statistics ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural networks, 2014-09, Vol.57, p.39-50</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</citedby><cites>FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</cites><orcidid>0000-0002-5028-9813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28640938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24927041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Hyohyeong</creatorcontrib><creatorcontrib>Choi, Seungjin</creatorcontrib><title>Bayesian common spatial patterns for multi-subject EEG classification</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Brain Waves</subject><subject>Brain–computer interface</subject><subject>Central nervous system</subject><subject>Common spatial patterns</subject><subject>Computer science; control theory; systems</subject><subject>Data Interpretation, Statistical</subject><subject>Data processing. List processing. Character string processing</subject><subject>EEG classification</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electroencephalography - classification</subject><subject>Electroencephalography - methods</subject><subject>Electrophysiology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Indian Buffet processes</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Memory organisation. Data processing</subject><subject>Models, Neurological</subject><subject>Nervous system</subject><subject>Nonparametric Bayesian methods</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0E1v1DAQgGELgehS-AcI5YLEJenYcfxxQaLVUpAqcWnPluNMJK8SZ_EkSP33dbUL3BCnuTwztl7G3nNoOHB1dWgSbgnXRgCXDXQNcPGC7bjRthbaiJdsB8a2tQIDF-wN0QEAlJHta3YhpBUaJN-x_bV_RIo-VWGZ5yVVdPRr9FNVxoo5UTUuuZq3aY01bf0Bw1rt97dVmDxRHGMoeklv2avRT4TvzvOSPXzd3998q-9-3H6_-XJXB2n5Wvct9F4oCwp08EKPg-l5b4UwgD2GoeedhAFQc9sNABoEV2IcOmV5sKO27SX7dLp7zMvPDWl1c6SA0-QTLhs53ingoHTb_QeVuhPWGChUnmjIC1HG0R1znH1-dBzcc2t3cKfW7rm1g86V1mXtw_mFrZ9x-LP0O24BH8_AU_DTmH0Kkf46oyTY1hT3-eSwpPsVMTsKEVPAIebS2w1L_PdPngB6wJ2B</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kang, Hyohyeong</creator><creator>Choi, Seungjin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0002-5028-9813</orcidid></search><sort><creationdate>20140901</creationdate><title>Bayesian common spatial patterns for multi-subject EEG classification</title><author>Kang, Hyohyeong ; Choi, Seungjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Brain Waves</topic><topic>Brain–computer interface</topic><topic>Central nervous system</topic><topic>Common spatial patterns</topic><topic>Computer science; control theory; systems</topic><topic>Data Interpretation, Statistical</topic><topic>Data processing. List processing. Character string processing</topic><topic>EEG classification</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electroencephalography - classification</topic><topic>Electroencephalography - methods</topic><topic>Electrophysiology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Indian Buffet processes</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Memory organisation. Data processing</topic><topic>Models, Neurological</topic><topic>Nervous system</topic><topic>Nonparametric Bayesian methods</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Hyohyeong</creatorcontrib><creatorcontrib>Choi, Seungjin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Hyohyeong</au><au>Choi, Seungjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian common spatial patterns for multi-subject EEG classification</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>57</volume><spage>39</spage><epage>50</epage><pages>39-50</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24927041</pmid><doi>10.1016/j.neunet.2014.05.012</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5028-9813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2014-09, Vol.57, p.39-50 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560106735 |
source | ScienceDirect Journals |
subjects | Algorithms Applied sciences Bayes Theorem Biological and medical sciences Brain Waves Brain–computer interface Central nervous system Common spatial patterns Computer science control theory systems Data Interpretation, Statistical Data processing. List processing. Character string processing EEG classification Electrodiagnosis. Electric activity recording Electroencephalography - classification Electroencephalography - methods Electrophysiology Exact sciences and technology Fundamental and applied biological sciences. Psychology Humans Indian Buffet processes Investigative techniques, diagnostic techniques (general aspects) Linear inference, regression Mathematics Medical sciences Memory organisation. Data processing Models, Neurological Nervous system Nonparametric Bayesian methods Probability and statistics Sciences and techniques of general use Software Statistics Vertebrates: nervous system and sense organs |
title | Bayesian common spatial patterns for multi-subject EEG classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20common%20spatial%20patterns%20for%20multi-subject%20EEG%20classification&rft.jtitle=Neural%20networks&rft.au=Kang,%20Hyohyeong&rft.date=2014-09-01&rft.volume=57&rft.spage=39&rft.epage=50&rft.pages=39-50&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.05.012&rft_dat=%3Cproquest_cross%3E1560106735%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547529880&rft_id=info:pmid/24927041&rfr_iscdi=true |