Loading…

Bayesian common spatial patterns for multi-subject EEG classification

Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feat...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2014-09, Vol.57, p.39-50
Main Authors: Kang, Hyohyeong, Choi, Seungjin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793
cites cdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793
container_end_page 50
container_issue
container_start_page 39
container_title Neural networks
container_volume 57
creator Kang, Hyohyeong
Choi, Seungjin
description Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.
doi_str_mv 10.1016/j.neunet.2014.05.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560106735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608014001117</els_id><sourcerecordid>1560106735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</originalsourceid><addsrcrecordid>eNqN0E1v1DAQgGELgehS-AcI5YLEJenYcfxxQaLVUpAqcWnPluNMJK8SZ_EkSP33dbUL3BCnuTwztl7G3nNoOHB1dWgSbgnXRgCXDXQNcPGC7bjRthbaiJdsB8a2tQIDF-wN0QEAlJHta3YhpBUaJN-x_bV_RIo-VWGZ5yVVdPRr9FNVxoo5UTUuuZq3aY01bf0Bw1rt97dVmDxRHGMoeklv2avRT4TvzvOSPXzd3998q-9-3H6_-XJXB2n5Wvct9F4oCwp08EKPg-l5b4UwgD2GoeedhAFQc9sNABoEV2IcOmV5sKO27SX7dLp7zMvPDWl1c6SA0-QTLhs53ingoHTb_QeVuhPWGChUnmjIC1HG0R1znH1-dBzcc2t3cKfW7rm1g86V1mXtw_mFrZ9x-LP0O24BH8_AU_DTmH0Kkf46oyTY1hT3-eSwpPsVMTsKEVPAIebS2w1L_PdPngB6wJ2B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547529880</pqid></control><display><type>article</type><title>Bayesian common spatial patterns for multi-subject EEG classification</title><source>ScienceDirect Journals</source><creator>Kang, Hyohyeong ; Choi, Seungjin</creator><creatorcontrib>Kang, Hyohyeong ; Choi, Seungjin</creatorcontrib><description>Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.05.012</identifier><identifier>PMID: 24927041</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Bayes Theorem ; Biological and medical sciences ; Brain Waves ; Brain–computer interface ; Central nervous system ; Common spatial patterns ; Computer science; control theory; systems ; Data Interpretation, Statistical ; Data processing. List processing. Character string processing ; EEG classification ; Electrodiagnosis. Electric activity recording ; Electroencephalography - classification ; Electroencephalography - methods ; Electrophysiology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Humans ; Indian Buffet processes ; Investigative techniques, diagnostic techniques (general aspects) ; Linear inference, regression ; Mathematics ; Medical sciences ; Memory organisation. Data processing ; Models, Neurological ; Nervous system ; Nonparametric Bayesian methods ; Probability and statistics ; Sciences and techniques of general use ; Software ; Statistics ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural networks, 2014-09, Vol.57, p.39-50</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</citedby><cites>FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</cites><orcidid>0000-0002-5028-9813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28640938$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24927041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Hyohyeong</creatorcontrib><creatorcontrib>Choi, Seungjin</creatorcontrib><title>Bayesian common spatial patterns for multi-subject EEG classification</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Brain Waves</subject><subject>Brain–computer interface</subject><subject>Central nervous system</subject><subject>Common spatial patterns</subject><subject>Computer science; control theory; systems</subject><subject>Data Interpretation, Statistical</subject><subject>Data processing. List processing. Character string processing</subject><subject>EEG classification</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electroencephalography - classification</subject><subject>Electroencephalography - methods</subject><subject>Electrophysiology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Indian Buffet processes</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Memory organisation. Data processing</subject><subject>Models, Neurological</subject><subject>Nervous system</subject><subject>Nonparametric Bayesian methods</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0E1v1DAQgGELgehS-AcI5YLEJenYcfxxQaLVUpAqcWnPluNMJK8SZ_EkSP33dbUL3BCnuTwztl7G3nNoOHB1dWgSbgnXRgCXDXQNcPGC7bjRthbaiJdsB8a2tQIDF-wN0QEAlJHta3YhpBUaJN-x_bV_RIo-VWGZ5yVVdPRr9FNVxoo5UTUuuZq3aY01bf0Bw1rt97dVmDxRHGMoeklv2avRT4TvzvOSPXzd3998q-9-3H6_-XJXB2n5Wvct9F4oCwp08EKPg-l5b4UwgD2GoeedhAFQc9sNABoEV2IcOmV5sKO27SX7dLp7zMvPDWl1c6SA0-QTLhs53ingoHTb_QeVuhPWGChUnmjIC1HG0R1znH1-dBzcc2t3cKfW7rm1g86V1mXtw_mFrZ9x-LP0O24BH8_AU_DTmH0Kkf46oyTY1hT3-eSwpPsVMTsKEVPAIebS2w1L_PdPngB6wJ2B</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Kang, Hyohyeong</creator><creator>Choi, Seungjin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0002-5028-9813</orcidid></search><sort><creationdate>20140901</creationdate><title>Bayesian common spatial patterns for multi-subject EEG classification</title><author>Kang, Hyohyeong ; Choi, Seungjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Brain Waves</topic><topic>Brain–computer interface</topic><topic>Central nervous system</topic><topic>Common spatial patterns</topic><topic>Computer science; control theory; systems</topic><topic>Data Interpretation, Statistical</topic><topic>Data processing. List processing. Character string processing</topic><topic>EEG classification</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electroencephalography - classification</topic><topic>Electroencephalography - methods</topic><topic>Electrophysiology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Indian Buffet processes</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Memory organisation. Data processing</topic><topic>Models, Neurological</topic><topic>Nervous system</topic><topic>Nonparametric Bayesian methods</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Hyohyeong</creatorcontrib><creatorcontrib>Choi, Seungjin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Hyohyeong</au><au>Choi, Seungjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian common spatial patterns for multi-subject EEG classification</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>57</volume><spage>39</spage><epage>50</epage><pages>39-50</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Multi-subject electroencephalography (EEG) classification involves algorithm development for automatically categorizing brain waves measured from multiple subjects who undergo the same mental task. Common spatial patterns (CSP) or its probabilistic counterpart, PCSP, is a popular discriminative feature extraction method for EEG classification. Models in CSP or PCSP are trained on a subject-by-subject basis so that inter-subject information is neglected. In the case of multi-subject EEG classification, however, it is desirable to capture inter-subject relatedness in learning a model. In this paper we present a nonparametric Bayesian model for a multi-subject extension of PCSP where subject relatedness is captured by assuming that spatial patterns across subjects share a latent subspace. Spatial patterns and the shared latent subspace are jointly learned by variational inference. We use an infinite latent feature model to automatically infer the dimension of the shared latent subspace, placing Indian Buffet process (IBP) priors on our model. Numerical experiments on BCI competition III IVa and IV 2a dataset demonstrate the high performance of our method, compared to PCSP and existing Bayesian multi-task CSP models.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24927041</pmid><doi>10.1016/j.neunet.2014.05.012</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5028-9813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2014-09, Vol.57, p.39-50
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1560106735
source ScienceDirect Journals
subjects Algorithms
Applied sciences
Bayes Theorem
Biological and medical sciences
Brain Waves
Brain–computer interface
Central nervous system
Common spatial patterns
Computer science
control theory
systems
Data Interpretation, Statistical
Data processing. List processing. Character string processing
EEG classification
Electrodiagnosis. Electric activity recording
Electroencephalography - classification
Electroencephalography - methods
Electrophysiology
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Humans
Indian Buffet processes
Investigative techniques, diagnostic techniques (general aspects)
Linear inference, regression
Mathematics
Medical sciences
Memory organisation. Data processing
Models, Neurological
Nervous system
Nonparametric Bayesian methods
Probability and statistics
Sciences and techniques of general use
Software
Statistics
Vertebrates: nervous system and sense organs
title Bayesian common spatial patterns for multi-subject EEG classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20common%20spatial%20patterns%20for%20multi-subject%20EEG%20classification&rft.jtitle=Neural%20networks&rft.au=Kang,%20Hyohyeong&rft.date=2014-09-01&rft.volume=57&rft.spage=39&rft.epage=50&rft.pages=39-50&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.05.012&rft_dat=%3Cproquest_cross%3E1560106735%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-b30ba2690607ca27fd8b1b92280ebecdb1540d0e7195d00702162fd5691c9f793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547529880&rft_id=info:pmid/24927041&rfr_iscdi=true