Loading…

Collagen Nanofibers Facilitated Presynaptic Maturation in Differentiated Neurons from Spinal-Cord-Derived Neural Stem Cells through MAPK/ERK1/2-Synapsin I Signaling Pathway

Neural stem cells (NSCs) are deemed to be a potential cell therapy for brain and spinal cord reconstruction and regeneration following injury. In this study, we investigated the role of nanofibrous scaffolds on NSCs-derived neurons in the formation of neural networks. Miniature excitatory postsynapt...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2014-07, Vol.15 (7), p.2449-2460
Main Authors: Yin, Yanling, Huang, Peng, Han, Zhu, Wei, Guojun, Zhou, Changwei, Wen, Jian, Su, Bo, Wang, Xiaoqin, Wang, Yansong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neural stem cells (NSCs) are deemed to be a potential cell therapy for brain and spinal cord reconstruction and regeneration following injury. In this study, we investigated the role of nanofibrous scaffolds on NSCs-derived neurons in the formation of neural networks. Miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole-cell patch clamp recording method after the spinal cord-derived NSCs were differentiated into neurons and cultured in vitro for 10–14 days. It was observed that the frequency of mEPSCs in the differentiated neurons cultured on both randomly oriented and aligned collagen nanofibrous scaffolds was higher than that on the collagen-coated control and can be inhibited by an ERK inhibitor (PD98059), indicating that the collagen nanofibers affected the maturation of the synapses from presynaptic sites via the MAPK/ERK1/2 pathway. In addition, both of the collagen nanofibers increased the phosphorylation of Synapsin I and facilitated the interaction of p-ERK1/2 and p-Synapsin I. All these results suggested that the collagen nanofibrous scaffolds contributed to the presynaptic maturation via the ERK1/2-Synapsin I signaling pathway.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm500321h