Loading…
Neuronal chemorepellent Semaphorin 3E inhibits human airway smooth muscle cell proliferation and migration
Background Chronic airway diseases, including asthma, are characterized by increased airway smooth muscle (ASM) mass that is due in part to growth factor-mediated ASM cell proliferation and migration. However, the molecular mechanisms underlying these effects are not completely understood. Semaphori...
Saved in:
Published in: | Journal of allergy and clinical immunology 2014-02, Vol.133 (2), p.560-567.e8 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Chronic airway diseases, including asthma, are characterized by increased airway smooth muscle (ASM) mass that is due in part to growth factor-mediated ASM cell proliferation and migration. However, the molecular mechanisms underlying these effects are not completely understood. Semaphorin 3E (Sema3E) has emerged as an essential mediator involved in cell migration, proliferation, and angiogenesis, although its role in ASM cell function is not investigated. Objectives We sought to determine the expression of Sema3E receptor, plexinD1, in human ASM cells (HASMCs); effect of Sema3E on basal and platelet-derived growth factor (PDGF)-induced proliferation and migration; and underlying signaling pathways. Methods Expression of plexinD1 in HASMCs was studied with RT-PCR, immunostaining, and flow cytometry. The effect of Sema3E on HASMC proliferation and migration was evaluated by 5-ethynyl-2′-deoxyuridine (EdU) incorporation, cell count, and Boyden chamber assay. Sema3E-mediated intracellular signaling was investigated with fluorescent microscopy, flow cytometry, Rac1 activation, and Western blot analysis. Results HASMCs from healthy persons expressed plexinD1 more than HASMCs from asthmatic patients. Sema3E increased plexinD1 expression in HASMCs from asthmatic patients. Recombinant Sema3E inhibited PDGF-mediated HASMC proliferation and migration, which was associated with F-actin depolymerization, suppression of PDGF-induced Rac1 guanosine triphosphatase activity, and Akt and extracellular signal-regulated kinase 1 and 2 phosphorylation. Bronchial biopsies from patients with mild asthma displayed immunoreactivity of plexinD1, suggesting the potential in vivo role of Sema3E–PlexinD1 axis in HASMC function. Conclusion This study provides the first evidence that Sema3E receptor is expressed and plays functional roles in HASMCs. Our data suggest a regulatory role of Sema3E in PDGF-mediated proliferation and migration, leading to downregulation of ASM remodeling. |
---|---|
ISSN: | 0091-6749 1097-6825 |
DOI: | 10.1016/j.jaci.2013.06.011 |