Loading…

Can transgenerational plasticity contribute to the invasion success of annual plant species?

Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking....

Full description

Saved in:
Bibliographic Details
Published in:Oecologia 2014-09, Vol.176 (1), p.95-106
Main Authors: Fenesi, Annamária, Dyer, Andrew R., Geréd, Júliánna, Sándor, Dorottya, Ruprecht, Eszter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73
cites cdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73
container_end_page 106
container_issue 1
container_start_page 95
container_title Oecologia
container_volume 176
creator Fenesi, Annamária
Dyer, Andrew R.
Geréd, Júliánna
Sándor, Dorottya
Ruprecht, Eszter
description Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.
doi_str_mv 10.1007/s00442-014-2994-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560132936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385802514</galeid><jstor_id>24037037</jstor_id><sourcerecordid>A385802514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoModl39AV4oAyLYi6n5nJlcSVm0LRQEP-6EkGbOrFlmM9ucjNh_b4ZZ266ImFwEkuc9Sd7zEvKc0RNGaf0WKZWSl5TJkmsty_oBWTApeMm00A_JglKuy0ZJfUSeIG5oBplSj8kRl5prIfWCfFvZUKRoA64hQLTJD8H2xa63mLzz6aZwQ0jRX40JijQU6TsUPvywmLkCR-cAsRi6woYwzrqQCtyB84DvnpJHne0Rnu3XJfn64f2X1Xl5-fHsYnV6WbqKN6lshHZSVEwDdco1kjPVOeCWtiAY62wLGpy1AC0DKaCCrhJSyda1jWu7thZL8mauu4vD9QiYzNajgz4_BoYRDVMVZSL_uPoPVImaCtpM6Ks_0M0wxuzOTAnK8rij1rYH40M3ZDfdVNScikY1lKvckiU5-QuVZwtbnx2Gzuf9A8HxgWDqAvxMazsimovPnw5ZNrMuDogROrOLfmvjjWHUTEExc1BM7r-ZgmImy17uPzdebaG9VfxORgZe7wGLzvZdjojzeMc1la5VNbnEZw7zUVhDvOfSP25_MYs2mIZ473I6mV-LXyOq3Us</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553301111</pqid></control><display><type>article</type><title>Can transgenerational plasticity contribute to the invasion success of annual plant species?</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Springer Nature</source><creator>Fenesi, Annamária ; Dyer, Andrew R. ; Geréd, Júliánna ; Sándor, Dorottya ; Ruprecht, Eszter</creator><creatorcontrib>Fenesi, Annamária ; Dyer, Andrew R. ; Geréd, Júliánna ; Sándor, Dorottya ; Ruprecht, Eszter</creatorcontrib><description>Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-014-2994-7</identifier><identifier>PMID: 24929349</identifier><identifier>CODEN: OECOBX</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Adaptation, Physiological - physiology ; Amaranthus - genetics ; Amaranthus - growth &amp; development ; Amaranthus albus ; Amaranthus retroflexus ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Asteraceae - genetics ; Asteraceae - growth &amp; development ; Biological and medical sciences ; Biomass ; Biomass production ; Biomedical and Life Sciences ; Ciliata ; Comparative studies ; Ecological invasion ; Ecology ; Environment ; Fundamental and applied biological sciences. Psychology ; Galinsoga ; Galinsoga parviflora ; General aspects ; Hydrology/Water Resources ; Indigenous species ; Inheritance Patterns - genetics ; Inheritance Patterns - physiology ; Introduced Species ; Invasive species ; Life Sciences ; Linear Models ; Offspring ; Phenotype ; Phenotypic traits ; Phenotypic variations ; Plant Sciences ; Plant species ; Plants ; Plasticity ; Population Dynamics ; POPULATION ECOLOGY ; Population ecology - Original research ; Population growth ; Seeds ; Species ; Water ; Water availability ; Water treatment</subject><ispartof>Oecologia, 2014-09, Vol.176 (1), p.95-106</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</citedby><cites>FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24037037$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24037037$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28697566$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24929349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fenesi, Annamária</creatorcontrib><creatorcontrib>Dyer, Andrew R.</creatorcontrib><creatorcontrib>Geréd, Júliánna</creatorcontrib><creatorcontrib>Sándor, Dorottya</creatorcontrib><creatorcontrib>Ruprecht, Eszter</creatorcontrib><title>Can transgenerational plasticity contribute to the invasion success of annual plant species?</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.</description><subject>Adaptation, Physiological - physiology</subject><subject>Amaranthus - genetics</subject><subject>Amaranthus - growth &amp; development</subject><subject>Amaranthus albus</subject><subject>Amaranthus retroflexus</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Asteraceae - genetics</subject><subject>Asteraceae - growth &amp; development</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biomass production</subject><subject>Biomedical and Life Sciences</subject><subject>Ciliata</subject><subject>Comparative studies</subject><subject>Ecological invasion</subject><subject>Ecology</subject><subject>Environment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galinsoga</subject><subject>Galinsoga parviflora</subject><subject>General aspects</subject><subject>Hydrology/Water Resources</subject><subject>Indigenous species</subject><subject>Inheritance Patterns - genetics</subject><subject>Inheritance Patterns - physiology</subject><subject>Introduced Species</subject><subject>Invasive species</subject><subject>Life Sciences</subject><subject>Linear Models</subject><subject>Offspring</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Phenotypic variations</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants</subject><subject>Plasticity</subject><subject>Population Dynamics</subject><subject>POPULATION ECOLOGY</subject><subject>Population ecology - Original research</subject><subject>Population growth</subject><subject>Seeds</subject><subject>Species</subject><subject>Water</subject><subject>Water availability</subject><subject>Water treatment</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhoModl39AV4oAyLYi6n5nJlcSVm0LRQEP-6EkGbOrFlmM9ucjNh_b4ZZ266ImFwEkuc9Sd7zEvKc0RNGaf0WKZWSl5TJkmsty_oBWTApeMm00A_JglKuy0ZJfUSeIG5oBplSj8kRl5prIfWCfFvZUKRoA64hQLTJD8H2xa63mLzz6aZwQ0jRX40JijQU6TsUPvywmLkCR-cAsRi6woYwzrqQCtyB84DvnpJHne0Rnu3XJfn64f2X1Xl5-fHsYnV6WbqKN6lshHZSVEwDdco1kjPVOeCWtiAY62wLGpy1AC0DKaCCrhJSyda1jWu7thZL8mauu4vD9QiYzNajgz4_BoYRDVMVZSL_uPoPVImaCtpM6Ks_0M0wxuzOTAnK8rij1rYH40M3ZDfdVNScikY1lKvckiU5-QuVZwtbnx2Gzuf9A8HxgWDqAvxMazsimovPnw5ZNrMuDogROrOLfmvjjWHUTEExc1BM7r-ZgmImy17uPzdebaG9VfxORgZe7wGLzvZdjojzeMc1la5VNbnEZw7zUVhDvOfSP25_MYs2mIZ473I6mV-LXyOq3Us</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Fenesi, Annamária</creator><creator>Dyer, Andrew R.</creator><creator>Geréd, Júliánna</creator><creator>Sándor, Dorottya</creator><creator>Ruprecht, Eszter</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Can transgenerational plasticity contribute to the invasion success of annual plant species?</title><author>Fenesi, Annamária ; Dyer, Andrew R. ; Geréd, Júliánna ; Sándor, Dorottya ; Ruprecht, Eszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Amaranthus - genetics</topic><topic>Amaranthus - growth &amp; development</topic><topic>Amaranthus albus</topic><topic>Amaranthus retroflexus</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Asteraceae - genetics</topic><topic>Asteraceae - growth &amp; development</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biomass production</topic><topic>Biomedical and Life Sciences</topic><topic>Ciliata</topic><topic>Comparative studies</topic><topic>Ecological invasion</topic><topic>Ecology</topic><topic>Environment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galinsoga</topic><topic>Galinsoga parviflora</topic><topic>General aspects</topic><topic>Hydrology/Water Resources</topic><topic>Indigenous species</topic><topic>Inheritance Patterns - genetics</topic><topic>Inheritance Patterns - physiology</topic><topic>Introduced Species</topic><topic>Invasive species</topic><topic>Life Sciences</topic><topic>Linear Models</topic><topic>Offspring</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Phenotypic variations</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants</topic><topic>Plasticity</topic><topic>Population Dynamics</topic><topic>POPULATION ECOLOGY</topic><topic>Population ecology - Original research</topic><topic>Population growth</topic><topic>Seeds</topic><topic>Species</topic><topic>Water</topic><topic>Water availability</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenesi, Annamária</creatorcontrib><creatorcontrib>Dyer, Andrew R.</creatorcontrib><creatorcontrib>Geréd, Júliánna</creatorcontrib><creatorcontrib>Sándor, Dorottya</creatorcontrib><creatorcontrib>Ruprecht, Eszter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenesi, Annamária</au><au>Dyer, Andrew R.</au><au>Geréd, Júliánna</au><au>Sándor, Dorottya</au><au>Ruprecht, Eszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can transgenerational plasticity contribute to the invasion success of annual plant species?</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>176</volume><issue>1</issue><spage>95</spage><epage>106</epage><pages>95-106</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><coden>OECOBX</coden><abstract>Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>24929349</pmid><doi>10.1007/s00442-014-2994-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-8549
ispartof Oecologia, 2014-09, Vol.176 (1), p.95-106
issn 0029-8549
1432-1939
language eng
recordid cdi_proquest_miscellaneous_1560132936
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Springer Nature
subjects Adaptation, Physiological - physiology
Amaranthus - genetics
Amaranthus - growth & development
Amaranthus albus
Amaranthus retroflexus
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Asteraceae - genetics
Asteraceae - growth & development
Biological and medical sciences
Biomass
Biomass production
Biomedical and Life Sciences
Ciliata
Comparative studies
Ecological invasion
Ecology
Environment
Fundamental and applied biological sciences. Psychology
Galinsoga
Galinsoga parviflora
General aspects
Hydrology/Water Resources
Indigenous species
Inheritance Patterns - genetics
Inheritance Patterns - physiology
Introduced Species
Invasive species
Life Sciences
Linear Models
Offspring
Phenotype
Phenotypic traits
Phenotypic variations
Plant Sciences
Plant species
Plants
Plasticity
Population Dynamics
POPULATION ECOLOGY
Population ecology - Original research
Population growth
Seeds
Species
Water
Water availability
Water treatment
title Can transgenerational plasticity contribute to the invasion success of annual plant species?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20transgenerational%20plasticity%20contribute%20to%20the%20invasion%20success%20of%20annual%20plant%20species?&rft.jtitle=Oecologia&rft.au=Fenesi,%20Annam%C3%A1ria&rft.date=2014-09-01&rft.volume=176&rft.issue=1&rft.spage=95&rft.epage=106&rft.pages=95-106&rft.issn=0029-8549&rft.eissn=1432-1939&rft.coden=OECOBX&rft_id=info:doi/10.1007/s00442-014-2994-7&rft_dat=%3Cgale_proqu%3EA385802514%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553301111&rft_id=info:pmid/24929349&rft_galeid=A385802514&rft_jstor_id=24037037&rfr_iscdi=true