Loading…
Can transgenerational plasticity contribute to the invasion success of annual plant species?
Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking....
Saved in:
Published in: | Oecologia 2014-09, Vol.176 (1), p.95-106 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73 |
---|---|
cites | cdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73 |
container_end_page | 106 |
container_issue | 1 |
container_start_page | 95 |
container_title | Oecologia |
container_volume | 176 |
creator | Fenesi, Annamária Dyer, Andrew R. Geréd, Júliánna Sándor, Dorottya Ruprecht, Eszter |
description | Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra. |
doi_str_mv | 10.1007/s00442-014-2994-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560132936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385802514</galeid><jstor_id>24037037</jstor_id><sourcerecordid>A385802514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoModl39AV4oAyLYi6n5nJlcSVm0LRQEP-6EkGbOrFlmM9ucjNh_b4ZZ266ImFwEkuc9Sd7zEvKc0RNGaf0WKZWSl5TJkmsty_oBWTApeMm00A_JglKuy0ZJfUSeIG5oBplSj8kRl5prIfWCfFvZUKRoA64hQLTJD8H2xa63mLzz6aZwQ0jRX40JijQU6TsUPvywmLkCR-cAsRi6woYwzrqQCtyB84DvnpJHne0Rnu3XJfn64f2X1Xl5-fHsYnV6WbqKN6lshHZSVEwDdco1kjPVOeCWtiAY62wLGpy1AC0DKaCCrhJSyda1jWu7thZL8mauu4vD9QiYzNajgz4_BoYRDVMVZSL_uPoPVImaCtpM6Ks_0M0wxuzOTAnK8rij1rYH40M3ZDfdVNScikY1lKvckiU5-QuVZwtbnx2Gzuf9A8HxgWDqAvxMazsimovPnw5ZNrMuDogROrOLfmvjjWHUTEExc1BM7r-ZgmImy17uPzdebaG9VfxORgZe7wGLzvZdjojzeMc1la5VNbnEZw7zUVhDvOfSP25_MYs2mIZ473I6mV-LXyOq3Us</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553301111</pqid></control><display><type>article</type><title>Can transgenerational plasticity contribute to the invasion success of annual plant species?</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Springer Nature</source><creator>Fenesi, Annamária ; Dyer, Andrew R. ; Geréd, Júliánna ; Sándor, Dorottya ; Ruprecht, Eszter</creator><creatorcontrib>Fenesi, Annamária ; Dyer, Andrew R. ; Geréd, Júliánna ; Sándor, Dorottya ; Ruprecht, Eszter</creatorcontrib><description>Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-014-2994-7</identifier><identifier>PMID: 24929349</identifier><identifier>CODEN: OECOBX</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Adaptation, Physiological - physiology ; Amaranthus - genetics ; Amaranthus - growth & development ; Amaranthus albus ; Amaranthus retroflexus ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Asteraceae - genetics ; Asteraceae - growth & development ; Biological and medical sciences ; Biomass ; Biomass production ; Biomedical and Life Sciences ; Ciliata ; Comparative studies ; Ecological invasion ; Ecology ; Environment ; Fundamental and applied biological sciences. Psychology ; Galinsoga ; Galinsoga parviflora ; General aspects ; Hydrology/Water Resources ; Indigenous species ; Inheritance Patterns - genetics ; Inheritance Patterns - physiology ; Introduced Species ; Invasive species ; Life Sciences ; Linear Models ; Offspring ; Phenotype ; Phenotypic traits ; Phenotypic variations ; Plant Sciences ; Plant species ; Plants ; Plasticity ; Population Dynamics ; POPULATION ECOLOGY ; Population ecology - Original research ; Population growth ; Seeds ; Species ; Water ; Water availability ; Water treatment</subject><ispartof>Oecologia, 2014-09, Vol.176 (1), p.95-106</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</citedby><cites>FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24037037$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24037037$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28697566$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24929349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fenesi, Annamária</creatorcontrib><creatorcontrib>Dyer, Andrew R.</creatorcontrib><creatorcontrib>Geréd, Júliánna</creatorcontrib><creatorcontrib>Sándor, Dorottya</creatorcontrib><creatorcontrib>Ruprecht, Eszter</creatorcontrib><title>Can transgenerational plasticity contribute to the invasion success of annual plant species?</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.</description><subject>Adaptation, Physiological - physiology</subject><subject>Amaranthus - genetics</subject><subject>Amaranthus - growth & development</subject><subject>Amaranthus albus</subject><subject>Amaranthus retroflexus</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Asteraceae - genetics</subject><subject>Asteraceae - growth & development</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biomass production</subject><subject>Biomedical and Life Sciences</subject><subject>Ciliata</subject><subject>Comparative studies</subject><subject>Ecological invasion</subject><subject>Ecology</subject><subject>Environment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galinsoga</subject><subject>Galinsoga parviflora</subject><subject>General aspects</subject><subject>Hydrology/Water Resources</subject><subject>Indigenous species</subject><subject>Inheritance Patterns - genetics</subject><subject>Inheritance Patterns - physiology</subject><subject>Introduced Species</subject><subject>Invasive species</subject><subject>Life Sciences</subject><subject>Linear Models</subject><subject>Offspring</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Phenotypic variations</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants</subject><subject>Plasticity</subject><subject>Population Dynamics</subject><subject>POPULATION ECOLOGY</subject><subject>Population ecology - Original research</subject><subject>Population growth</subject><subject>Seeds</subject><subject>Species</subject><subject>Water</subject><subject>Water availability</subject><subject>Water treatment</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkl1rFDEUhoModl39AV4oAyLYi6n5nJlcSVm0LRQEP-6EkGbOrFlmM9ucjNh_b4ZZ266ImFwEkuc9Sd7zEvKc0RNGaf0WKZWSl5TJkmsty_oBWTApeMm00A_JglKuy0ZJfUSeIG5oBplSj8kRl5prIfWCfFvZUKRoA64hQLTJD8H2xa63mLzz6aZwQ0jRX40JijQU6TsUPvywmLkCR-cAsRi6woYwzrqQCtyB84DvnpJHne0Rnu3XJfn64f2X1Xl5-fHsYnV6WbqKN6lshHZSVEwDdco1kjPVOeCWtiAY62wLGpy1AC0DKaCCrhJSyda1jWu7thZL8mauu4vD9QiYzNajgz4_BoYRDVMVZSL_uPoPVImaCtpM6Ks_0M0wxuzOTAnK8rij1rYH40M3ZDfdVNScikY1lKvckiU5-QuVZwtbnx2Gzuf9A8HxgWDqAvxMazsimovPnw5ZNrMuDogROrOLfmvjjWHUTEExc1BM7r-ZgmImy17uPzdebaG9VfxORgZe7wGLzvZdjojzeMc1la5VNbnEZw7zUVhDvOfSP25_MYs2mIZ473I6mV-LXyOq3Us</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Fenesi, Annamária</creator><creator>Dyer, Andrew R.</creator><creator>Geréd, Júliánna</creator><creator>Sándor, Dorottya</creator><creator>Ruprecht, Eszter</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Can transgenerational plasticity contribute to the invasion success of annual plant species?</title><author>Fenesi, Annamária ; Dyer, Andrew R. ; Geréd, Júliánna ; Sándor, Dorottya ; Ruprecht, Eszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Amaranthus - genetics</topic><topic>Amaranthus - growth & development</topic><topic>Amaranthus albus</topic><topic>Amaranthus retroflexus</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Asteraceae - genetics</topic><topic>Asteraceae - growth & development</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biomass production</topic><topic>Biomedical and Life Sciences</topic><topic>Ciliata</topic><topic>Comparative studies</topic><topic>Ecological invasion</topic><topic>Ecology</topic><topic>Environment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galinsoga</topic><topic>Galinsoga parviflora</topic><topic>General aspects</topic><topic>Hydrology/Water Resources</topic><topic>Indigenous species</topic><topic>Inheritance Patterns - genetics</topic><topic>Inheritance Patterns - physiology</topic><topic>Introduced Species</topic><topic>Invasive species</topic><topic>Life Sciences</topic><topic>Linear Models</topic><topic>Offspring</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Phenotypic variations</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants</topic><topic>Plasticity</topic><topic>Population Dynamics</topic><topic>POPULATION ECOLOGY</topic><topic>Population ecology - Original research</topic><topic>Population growth</topic><topic>Seeds</topic><topic>Species</topic><topic>Water</topic><topic>Water availability</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenesi, Annamária</creatorcontrib><creatorcontrib>Dyer, Andrew R.</creatorcontrib><creatorcontrib>Geréd, Júliánna</creatorcontrib><creatorcontrib>Sándor, Dorottya</creatorcontrib><creatorcontrib>Ruprecht, Eszter</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenesi, Annamária</au><au>Dyer, Andrew R.</au><au>Geréd, Júliánna</au><au>Sándor, Dorottya</au><au>Ruprecht, Eszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can transgenerational plasticity contribute to the invasion success of annual plant species?</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>176</volume><issue>1</issue><spage>95</spage><epage>106</epage><pages>95-106</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><coden>OECOBX</coden><abstract>Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>24929349</pmid><doi>10.1007/s00442-014-2994-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2014-09, Vol.176 (1), p.95-106 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560132936 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Springer Nature |
subjects | Adaptation, Physiological - physiology Amaranthus - genetics Amaranthus - growth & development Amaranthus albus Amaranthus retroflexus Animal and plant ecology Animal, plant and microbial ecology Animals Asteraceae - genetics Asteraceae - growth & development Biological and medical sciences Biomass Biomass production Biomedical and Life Sciences Ciliata Comparative studies Ecological invasion Ecology Environment Fundamental and applied biological sciences. Psychology Galinsoga Galinsoga parviflora General aspects Hydrology/Water Resources Indigenous species Inheritance Patterns - genetics Inheritance Patterns - physiology Introduced Species Invasive species Life Sciences Linear Models Offspring Phenotype Phenotypic traits Phenotypic variations Plant Sciences Plant species Plants Plasticity Population Dynamics POPULATION ECOLOGY Population ecology - Original research Population growth Seeds Species Water Water availability Water treatment |
title | Can transgenerational plasticity contribute to the invasion success of annual plant species? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20transgenerational%20plasticity%20contribute%20to%20the%20invasion%20success%20of%20annual%20plant%20species?&rft.jtitle=Oecologia&rft.au=Fenesi,%20Annam%C3%A1ria&rft.date=2014-09-01&rft.volume=176&rft.issue=1&rft.spage=95&rft.epage=106&rft.pages=95-106&rft.issn=0029-8549&rft.eissn=1432-1939&rft.coden=OECOBX&rft_id=info:doi/10.1007/s00442-014-2994-7&rft_dat=%3Cgale_proqu%3EA385802514%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c628t-839c43619e0c5c84215fce2a0de311fade9ecaaeed1e43e6ef63454dcd8cdfd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1553301111&rft_id=info:pmid/24929349&rft_galeid=A385802514&rft_jstor_id=24037037&rfr_iscdi=true |