Loading…

Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction

The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2014-09, Vol.21 (17), p.10550-10559
Main Authors: Pires, J. C. M, Souza, A, Pavão, H. G, Martins, F. G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3
cites cdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3
container_end_page 10559
container_issue 17
container_start_page 10550
container_title Environmental science and pollution research international
container_volume 21
creator Pires, J. C. M
Souza, A
Pavão, H. G
Martins, F. G
description The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.
doi_str_mv 10.1007/s11356-014-2977-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560137517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560137517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EokvhA3ABS1w4kDL-E2fdG6ygVKrUA5SrNXEmK1dJvNjJof309SoFIQ4cLM9ofu_N6DH2WsCZAGg-ZiFUbSoQupK2aSrzhG2EKV2jrX3KNmC1roTS-oS9yPkWQIKVzXN2IvW21jXAhuFPTAHnECcee56X1KMnHu_jRDxMfIfjIfKLhFNHH_jnhPdhOOcjzRRTHOI-eBw49T35meOEw10OuRQdPyTqgj_6vmTPehwyvXr8T9nN1y8_dt-qq-uLy92nq8rrrZ2r3iCCUdYaZfqOaiQNXrYotZS11q3xra8FeKMQbKk6wC3YWgsBTSuI1Cl7v_oeUvy1UJ7dGLKnYcCJ4pKdqA0I1dSiKei7f9DbuKRy_pEqyxTIxhZKrJRPMedEvTukMGK6cwLcMX-35u9K_u6YvzNF8-bReWlH6v4ofgdeALkCuYymPaW_Vv_H9e0q6jE63KeQ3c13WQAoT4PYqgfJFJhr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554430279</pqid></control><display><type>article</type><title>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Pires, J. C. M ; Souza, A ; Pavão, H. G ; Martins, F. G</creator><creatorcontrib>Pires, J. C. M ; Souza, A ; Pavão, H. G ; Martins, F. G</creatorcontrib><description>The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-014-2977-6</identifier><identifier>PMID: 24854500</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>air ; Air Pollutants - analysis ; Air pollution ; algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Brazil ; Chemical reactions ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Monitoring - methods ; Environmental Monitoring - statistics &amp; numerical data ; Environmental science ; Forecasting ; Forecasting techniques ; Genetic algorithms ; Genetic analysis ; Genetic diversity ; human health ; Humidity ; issues and policy ; Meteorology - methods ; Neural networks ; Neural Networks (Computer) ; Neurons ; Outdoor air quality ; Ozone ; Ozone - analysis ; Pollutants ; prediction ; Radiation ; rain ; Relative humidity ; Research Article ; Solar radiation ; Studies ; temporal variation ; Temporal variations ; Time Factors ; Variables ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wind ; Wind speed</subject><ispartof>Environmental science and pollution research international, 2014-09, Vol.21 (17), p.10550-10559</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</citedby><cites>FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1554430279/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1554430279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24854500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pires, J. C. M</creatorcontrib><creatorcontrib>Souza, A</creatorcontrib><creatorcontrib>Pavão, H. G</creatorcontrib><creatorcontrib>Martins, F. G</creatorcontrib><title>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.</description><subject>air</subject><subject>Air Pollutants - analysis</subject><subject>Air pollution</subject><subject>algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Brazil</subject><subject>Chemical reactions</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Monitoring - statistics &amp; numerical data</subject><subject>Environmental science</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Genetic algorithms</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>human health</subject><subject>Humidity</subject><subject>issues and policy</subject><subject>Meteorology - methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Outdoor air quality</subject><subject>Ozone</subject><subject>Ozone - analysis</subject><subject>Pollutants</subject><subject>prediction</subject><subject>Radiation</subject><subject>rain</subject><subject>Relative humidity</subject><subject>Research Article</subject><subject>Solar radiation</subject><subject>Studies</subject><subject>temporal variation</subject><subject>Temporal variations</subject><subject>Time Factors</subject><subject>Variables</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9v1DAQxS0EokvhA3ABS1w4kDL-E2fdG6ygVKrUA5SrNXEmK1dJvNjJof309SoFIQ4cLM9ofu_N6DH2WsCZAGg-ZiFUbSoQupK2aSrzhG2EKV2jrX3KNmC1roTS-oS9yPkWQIKVzXN2IvW21jXAhuFPTAHnECcee56X1KMnHu_jRDxMfIfjIfKLhFNHH_jnhPdhOOcjzRRTHOI-eBw49T35meOEw10OuRQdPyTqgj_6vmTPehwyvXr8T9nN1y8_dt-qq-uLy92nq8rrrZ2r3iCCUdYaZfqOaiQNXrYotZS11q3xra8FeKMQbKk6wC3YWgsBTSuI1Cl7v_oeUvy1UJ7dGLKnYcCJ4pKdqA0I1dSiKei7f9DbuKRy_pEqyxTIxhZKrJRPMedEvTukMGK6cwLcMX-35u9K_u6YvzNF8-bReWlH6v4ofgdeALkCuYymPaW_Vv_H9e0q6jE63KeQ3c13WQAoT4PYqgfJFJhr</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Pires, J. C. M</creator><creator>Souza, A</creator><creator>Pavão, H. G</creator><creator>Martins, F. G</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7T2</scope><scope>7TG</scope><scope>7U2</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20140901</creationdate><title>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</title><author>Pires, J. C. M ; Souza, A ; Pavão, H. G ; Martins, F. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>air</topic><topic>Air Pollutants - analysis</topic><topic>Air pollution</topic><topic>algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Brazil</topic><topic>Chemical reactions</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Monitoring - statistics &amp; numerical data</topic><topic>Environmental science</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Genetic algorithms</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>human health</topic><topic>Humidity</topic><topic>issues and policy</topic><topic>Meteorology - methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Outdoor air quality</topic><topic>Ozone</topic><topic>Ozone - analysis</topic><topic>Pollutants</topic><topic>prediction</topic><topic>Radiation</topic><topic>rain</topic><topic>Relative humidity</topic><topic>Research Article</topic><topic>Solar radiation</topic><topic>Studies</topic><topic>temporal variation</topic><topic>Temporal variations</topic><topic>Time Factors</topic><topic>Variables</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pires, J. C. M</creatorcontrib><creatorcontrib>Souza, A</creatorcontrib><creatorcontrib>Pavão, H. G</creatorcontrib><creatorcontrib>Martins, F. G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pires, J. C. M</au><au>Souza, A</au><au>Pavão, H. G</au><au>Martins, F. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>21</volume><issue>17</issue><spage>10550</spage><epage>10559</epage><pages>10550-10559</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24854500</pmid><doi>10.1007/s11356-014-2977-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2014-09, Vol.21 (17), p.10550-10559
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_1560137517
source ABI/INFORM Global; Springer Nature
subjects air
Air Pollutants - analysis
Air pollution
algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Brazil
Chemical reactions
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental Monitoring - methods
Environmental Monitoring - statistics & numerical data
Environmental science
Forecasting
Forecasting techniques
Genetic algorithms
Genetic analysis
Genetic diversity
human health
Humidity
issues and policy
Meteorology - methods
Neural networks
Neural Networks (Computer)
Neurons
Outdoor air quality
Ozone
Ozone - analysis
Pollutants
prediction
Radiation
rain
Relative humidity
Research Article
Solar radiation
Studies
temporal variation
Temporal variations
Time Factors
Variables
Waste Water Technology
Water Management
Water Pollution Control
Wind
Wind speed
title Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20surface%20ozone%20in%20Campo%20Grande,%20Brazil:%20meteorological%20effect%20analysis%20and%20prediction&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Pires,%20J.%20C.%20M&rft.date=2014-09-01&rft.volume=21&rft.issue=17&rft.spage=10550&rft.epage=10559&rft.pages=10550-10559&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-014-2977-6&rft_dat=%3Cproquest_cross%3E1560137517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1554430279&rft_id=info:pmid/24854500&rfr_iscdi=true