Loading…
Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction
The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air...
Saved in:
Published in: | Environmental science and pollution research international 2014-09, Vol.21 (17), p.10550-10559 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3 |
container_end_page | 10559 |
container_issue | 17 |
container_start_page | 10550 |
container_title | Environmental science and pollution research international |
container_volume | 21 |
creator | Pires, J. C. M Souza, A Pavão, H. G Martins, F. G |
description | The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution. |
doi_str_mv | 10.1007/s11356-014-2977-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560137517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560137517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EokvhA3ABS1w4kDL-E2fdG6ygVKrUA5SrNXEmK1dJvNjJof309SoFIQ4cLM9ofu_N6DH2WsCZAGg-ZiFUbSoQupK2aSrzhG2EKV2jrX3KNmC1roTS-oS9yPkWQIKVzXN2IvW21jXAhuFPTAHnECcee56X1KMnHu_jRDxMfIfjIfKLhFNHH_jnhPdhOOcjzRRTHOI-eBw49T35meOEw10OuRQdPyTqgj_6vmTPehwyvXr8T9nN1y8_dt-qq-uLy92nq8rrrZ2r3iCCUdYaZfqOaiQNXrYotZS11q3xra8FeKMQbKk6wC3YWgsBTSuI1Cl7v_oeUvy1UJ7dGLKnYcCJ4pKdqA0I1dSiKei7f9DbuKRy_pEqyxTIxhZKrJRPMedEvTukMGK6cwLcMX-35u9K_u6YvzNF8-bReWlH6v4ofgdeALkCuYymPaW_Vv_H9e0q6jE63KeQ3c13WQAoT4PYqgfJFJhr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554430279</pqid></control><display><type>article</type><title>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Pires, J. C. M ; Souza, A ; Pavão, H. G ; Martins, F. G</creator><creatorcontrib>Pires, J. C. M ; Souza, A ; Pavão, H. G ; Martins, F. G</creatorcontrib><description>The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-014-2977-6</identifier><identifier>PMID: 24854500</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>air ; Air Pollutants - analysis ; Air pollution ; algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Brazil ; Chemical reactions ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Monitoring - methods ; Environmental Monitoring - statistics & numerical data ; Environmental science ; Forecasting ; Forecasting techniques ; Genetic algorithms ; Genetic analysis ; Genetic diversity ; human health ; Humidity ; issues and policy ; Meteorology - methods ; Neural networks ; Neural Networks (Computer) ; Neurons ; Outdoor air quality ; Ozone ; Ozone - analysis ; Pollutants ; prediction ; Radiation ; rain ; Relative humidity ; Research Article ; Solar radiation ; Studies ; temporal variation ; Temporal variations ; Time Factors ; Variables ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wind ; Wind speed</subject><ispartof>Environmental science and pollution research international, 2014-09, Vol.21 (17), p.10550-10559</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</citedby><cites>FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1554430279/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1554430279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24854500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pires, J. C. M</creatorcontrib><creatorcontrib>Souza, A</creatorcontrib><creatorcontrib>Pavão, H. G</creatorcontrib><creatorcontrib>Martins, F. G</creatorcontrib><title>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.</description><subject>air</subject><subject>Air Pollutants - analysis</subject><subject>Air pollution</subject><subject>algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Brazil</subject><subject>Chemical reactions</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Monitoring - statistics & numerical data</subject><subject>Environmental science</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Genetic algorithms</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>human health</subject><subject>Humidity</subject><subject>issues and policy</subject><subject>Meteorology - methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Outdoor air quality</subject><subject>Ozone</subject><subject>Ozone - analysis</subject><subject>Pollutants</subject><subject>prediction</subject><subject>Radiation</subject><subject>rain</subject><subject>Relative humidity</subject><subject>Research Article</subject><subject>Solar radiation</subject><subject>Studies</subject><subject>temporal variation</subject><subject>Temporal variations</subject><subject>Time Factors</subject><subject>Variables</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE9v1DAQxS0EokvhA3ABS1w4kDL-E2fdG6ygVKrUA5SrNXEmK1dJvNjJof309SoFIQ4cLM9ofu_N6DH2WsCZAGg-ZiFUbSoQupK2aSrzhG2EKV2jrX3KNmC1roTS-oS9yPkWQIKVzXN2IvW21jXAhuFPTAHnECcee56X1KMnHu_jRDxMfIfjIfKLhFNHH_jnhPdhOOcjzRRTHOI-eBw49T35meOEw10OuRQdPyTqgj_6vmTPehwyvXr8T9nN1y8_dt-qq-uLy92nq8rrrZ2r3iCCUdYaZfqOaiQNXrYotZS11q3xra8FeKMQbKk6wC3YWgsBTSuI1Cl7v_oeUvy1UJ7dGLKnYcCJ4pKdqA0I1dSiKei7f9DbuKRy_pEqyxTIxhZKrJRPMedEvTukMGK6cwLcMX-35u9K_u6YvzNF8-bReWlH6v4ofgdeALkCuYymPaW_Vv_H9e0q6jE63KeQ3c13WQAoT4PYqgfJFJhr</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Pires, J. C. M</creator><creator>Souza, A</creator><creator>Pavão, H. G</creator><creator>Martins, F. G</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7T2</scope><scope>7TG</scope><scope>7U2</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20140901</creationdate><title>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</title><author>Pires, J. C. M ; Souza, A ; Pavão, H. G ; Martins, F. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>air</topic><topic>Air Pollutants - analysis</topic><topic>Air pollution</topic><topic>algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Brazil</topic><topic>Chemical reactions</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Monitoring - statistics & numerical data</topic><topic>Environmental science</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Genetic algorithms</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>human health</topic><topic>Humidity</topic><topic>issues and policy</topic><topic>Meteorology - methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Outdoor air quality</topic><topic>Ozone</topic><topic>Ozone - analysis</topic><topic>Pollutants</topic><topic>prediction</topic><topic>Radiation</topic><topic>rain</topic><topic>Relative humidity</topic><topic>Research Article</topic><topic>Solar radiation</topic><topic>Studies</topic><topic>temporal variation</topic><topic>Temporal variations</topic><topic>Time Factors</topic><topic>Variables</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pires, J. C. M</creatorcontrib><creatorcontrib>Souza, A</creatorcontrib><creatorcontrib>Pavão, H. G</creatorcontrib><creatorcontrib>Martins, F. G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pires, J. C. M</au><au>Souza, A</au><au>Pavão, H. G</au><au>Martins, F. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>21</volume><issue>17</issue><spage>10550</spage><epage>10559</epage><pages>10550-10559</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The effect of meteorological variables on surface ozone (O₃) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O₃ concentration, relative humidity and solar radiation. The threshold model that considers two O₃ regimes was the one that correctly describes the effect of important meteorological variables in O₃ behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O₃ regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O₃ concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O₃ behaviour, being useful to define policy strategies for human health protection regarding air pollution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24854500</pmid><doi>10.1007/s11356-014-2977-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2014-09, Vol.21 (17), p.10550-10559 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560137517 |
source | ABI/INFORM Global; Springer Nature |
subjects | air Air Pollutants - analysis Air pollution algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Brazil Chemical reactions Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental Monitoring - methods Environmental Monitoring - statistics & numerical data Environmental science Forecasting Forecasting techniques Genetic algorithms Genetic analysis Genetic diversity human health Humidity issues and policy Meteorology - methods Neural networks Neural Networks (Computer) Neurons Outdoor air quality Ozone Ozone - analysis Pollutants prediction Radiation rain Relative humidity Research Article Solar radiation Studies temporal variation Temporal variations Time Factors Variables Waste Water Technology Water Management Water Pollution Control Wind Wind speed |
title | Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20surface%20ozone%20in%20Campo%20Grande,%20Brazil:%20meteorological%20effect%20analysis%20and%20prediction&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Pires,%20J.%20C.%20M&rft.date=2014-09-01&rft.volume=21&rft.issue=17&rft.spage=10550&rft.epage=10559&rft.pages=10550-10559&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-014-2977-6&rft_dat=%3Cproquest_cross%3E1560137517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-f6aa06399636fde5ae40c2ba2422544b6cbc510c63a09c51d0a809541107b1ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1554430279&rft_id=info:pmid/24854500&rfr_iscdi=true |