Loading…

Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions

Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2014-08, Vol.130 (4), p.472-489
Main Authors: Heumann, Rolf, Moratalla, Rosario, Herrero, Maria Trinidad, Chakrabarty, Koushik, Drucker‐Colín, René, Garcia‐Montes, Jose Ruben, Simola, Nicola, Morelli, Micaela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273
cites cdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273
container_end_page 489
container_issue 4
container_start_page 472
container_title Journal of neurochemistry
container_volume 130
creator Heumann, Rolf
Moratalla, Rosario
Herrero, Maria Trinidad
Chakrabarty, Koushik
Drucker‐Colín, René
Garcia‐Montes, Jose Ruben
Simola, Nicola
Morelli, Micaela
description Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.
doi_str_mv 10.1111/jnc.12751
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560137948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3394708021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</originalsourceid><addsrcrecordid>eNqNkc9O3DAQh60KBAvlwAtUkThADwGPHdsbbtXyrwi1HOBYRY7jFG8Te-vZgPbGI_QZeZJ6WeCAVKm-jKz59I1mfoTsAj2E9I6m3hwCUwI-kBEUCvICRLlGRpQylnNasE2yhTilFGQhYYNsskIpTjmMyI-TBf5y3qLTmfPZtY7ph8HvY9Y4tBrtcdZbc6e9wx4z7ZvMDDFaP8988E-Pf2Z3OvbahC78dEZ3STK38T71XfD4kay3ukO781K3ye3Z6c3kIr_6fv518uUqN4WQkDNTCmOMLAF0C2bc1o2yrNVWUUPLugQpS9XUQkquuDZgx1JINVataHhtmOLb5GDlncXwe7A4r3qHxnad9jYMWIGQFLgqi_F_oIJxJZQSCd17h07DEH1aZEmlE5eCLmd_XlEmBsRo22oWXa_jogJaLeOpUjzVczyJ_fRiHOreNm_kax4JOFoBD66zi3-bqstvk5XyL43fmiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551599507</pqid></control><display><type>article</type><title>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heumann, Rolf ; Moratalla, Rosario ; Herrero, Maria Trinidad ; Chakrabarty, Koushik ; Drucker‐Colín, René ; Garcia‐Montes, Jose Ruben ; Simola, Nicola ; Morelli, Micaela</creator><creatorcontrib>Heumann, Rolf ; Moratalla, Rosario ; Herrero, Maria Trinidad ; Chakrabarty, Koushik ; Drucker‐Colín, René ; Garcia‐Montes, Jose Ruben ; Simola, Nicola ; Morelli, Micaela</creatorcontrib><description>Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/jnc.12751</identifier><identifier>PMID: 24773031</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Cannabinoids - pharmacology ; cell replacement therapy ; Cell Transplantation ; Chromatin - drug effects ; Deep Brain Stimulation ; Dopamine ; Dopamine Agents - therapeutic use ; Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology ; Dyskinesias - etiology ; Dyskinesias - physiopathology ; Dyskinesias - therapy ; exercise ; Histones - metabolism ; Humans ; Levodopa - pharmacology ; Levodopa - therapeutic use ; L‐DOPA ; Magnetic fields ; Motor Activity - physiology ; Neurochemistry ; Parkinson Disease - complications ; Parkinson Disease - physiopathology ; Parkinson Disease - therapy ; Parkinson's disease ; Phosphorylation ; Psychomotor Performance - physiology ; Receptors, Dopamine D1 - drug effects ; Receptors, Dopamine D1 - metabolism ; Signal Transduction - drug effects ; striatum ; transcranial magnetic field stimulation ; Transcranial Magnetic Stimulation</subject><ispartof>Journal of neurochemistry, 2014-08, Vol.130 (4), p.472-489</ispartof><rights>2014 International Society for Neurochemistry</rights><rights>2014 International Society for Neurochemistry.</rights><rights>Copyright © 2014 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</citedby><cites>FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24773031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heumann, Rolf</creatorcontrib><creatorcontrib>Moratalla, Rosario</creatorcontrib><creatorcontrib>Herrero, Maria Trinidad</creatorcontrib><creatorcontrib>Chakrabarty, Koushik</creatorcontrib><creatorcontrib>Drucker‐Colín, René</creatorcontrib><creatorcontrib>Garcia‐Montes, Jose Ruben</creatorcontrib><creatorcontrib>Simola, Nicola</creatorcontrib><creatorcontrib>Morelli, Micaela</creatorcontrib><title>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.</description><subject>Animals</subject><subject>Cannabinoids - pharmacology</subject><subject>cell replacement therapy</subject><subject>Cell Transplantation</subject><subject>Chromatin - drug effects</subject><subject>Deep Brain Stimulation</subject><subject>Dopamine</subject><subject>Dopamine Agents - therapeutic use</subject><subject>Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology</subject><subject>Dyskinesias - etiology</subject><subject>Dyskinesias - physiopathology</subject><subject>Dyskinesias - therapy</subject><subject>exercise</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Levodopa - pharmacology</subject><subject>Levodopa - therapeutic use</subject><subject>L‐DOPA</subject><subject>Magnetic fields</subject><subject>Motor Activity - physiology</subject><subject>Neurochemistry</subject><subject>Parkinson Disease - complications</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson Disease - therapy</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Psychomotor Performance - physiology</subject><subject>Receptors, Dopamine D1 - drug effects</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>striatum</subject><subject>transcranial magnetic field stimulation</subject><subject>Transcranial Magnetic Stimulation</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9O3DAQh60KBAvlwAtUkThADwGPHdsbbtXyrwi1HOBYRY7jFG8Te-vZgPbGI_QZeZJ6WeCAVKm-jKz59I1mfoTsAj2E9I6m3hwCUwI-kBEUCvICRLlGRpQylnNasE2yhTilFGQhYYNsskIpTjmMyI-TBf5y3qLTmfPZtY7ph8HvY9Y4tBrtcdZbc6e9wx4z7ZvMDDFaP8988E-Pf2Z3OvbahC78dEZ3STK38T71XfD4kay3ukO781K3ye3Z6c3kIr_6fv518uUqN4WQkDNTCmOMLAF0C2bc1o2yrNVWUUPLugQpS9XUQkquuDZgx1JINVataHhtmOLb5GDlncXwe7A4r3qHxnad9jYMWIGQFLgqi_F_oIJxJZQSCd17h07DEH1aZEmlE5eCLmd_XlEmBsRo22oWXa_jogJaLeOpUjzVczyJ_fRiHOreNm_kax4JOFoBD66zi3-bqstvk5XyL43fmiE</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Heumann, Rolf</creator><creator>Moratalla, Rosario</creator><creator>Herrero, Maria Trinidad</creator><creator>Chakrabarty, Koushik</creator><creator>Drucker‐Colín, René</creator><creator>Garcia‐Montes, Jose Ruben</creator><creator>Simola, Nicola</creator><creator>Morelli, Micaela</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201408</creationdate><title>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</title><author>Heumann, Rolf ; Moratalla, Rosario ; Herrero, Maria Trinidad ; Chakrabarty, Koushik ; Drucker‐Colín, René ; Garcia‐Montes, Jose Ruben ; Simola, Nicola ; Morelli, Micaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cannabinoids - pharmacology</topic><topic>cell replacement therapy</topic><topic>Cell Transplantation</topic><topic>Chromatin - drug effects</topic><topic>Deep Brain Stimulation</topic><topic>Dopamine</topic><topic>Dopamine Agents - therapeutic use</topic><topic>Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology</topic><topic>Dyskinesias - etiology</topic><topic>Dyskinesias - physiopathology</topic><topic>Dyskinesias - therapy</topic><topic>exercise</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Levodopa - pharmacology</topic><topic>Levodopa - therapeutic use</topic><topic>L‐DOPA</topic><topic>Magnetic fields</topic><topic>Motor Activity - physiology</topic><topic>Neurochemistry</topic><topic>Parkinson Disease - complications</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson Disease - therapy</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Psychomotor Performance - physiology</topic><topic>Receptors, Dopamine D1 - drug effects</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>striatum</topic><topic>transcranial magnetic field stimulation</topic><topic>Transcranial Magnetic Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heumann, Rolf</creatorcontrib><creatorcontrib>Moratalla, Rosario</creatorcontrib><creatorcontrib>Herrero, Maria Trinidad</creatorcontrib><creatorcontrib>Chakrabarty, Koushik</creatorcontrib><creatorcontrib>Drucker‐Colín, René</creatorcontrib><creatorcontrib>Garcia‐Montes, Jose Ruben</creatorcontrib><creatorcontrib>Simola, Nicola</creatorcontrib><creatorcontrib>Morelli, Micaela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heumann, Rolf</au><au>Moratalla, Rosario</au><au>Herrero, Maria Trinidad</au><au>Chakrabarty, Koushik</au><au>Drucker‐Colín, René</au><au>Garcia‐Montes, Jose Ruben</au><au>Simola, Nicola</au><au>Morelli, Micaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2014-08</date><risdate>2014</risdate><volume>130</volume><issue>4</issue><spage>472</spage><epage>489</epage><pages>472-489</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24773031</pmid><doi>10.1111/jnc.12751</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2014-08, Vol.130 (4), p.472-489
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_1560137948
source Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry
subjects Animals
Cannabinoids - pharmacology
cell replacement therapy
Cell Transplantation
Chromatin - drug effects
Deep Brain Stimulation
Dopamine
Dopamine Agents - therapeutic use
Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology
Dyskinesias - etiology
Dyskinesias - physiopathology
Dyskinesias - therapy
exercise
Histones - metabolism
Humans
Levodopa - pharmacology
Levodopa - therapeutic use
L‐DOPA
Magnetic fields
Motor Activity - physiology
Neurochemistry
Parkinson Disease - complications
Parkinson Disease - physiopathology
Parkinson Disease - therapy
Parkinson's disease
Phosphorylation
Psychomotor Performance - physiology
Receptors, Dopamine D1 - drug effects
Receptors, Dopamine D1 - metabolism
Signal Transduction - drug effects
striatum
transcranial magnetic field stimulation
Transcranial Magnetic Stimulation
title Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dyskinesia%20in%20Parkinson's%20disease:%20mechanisms%20and%20current%20non%E2%80%90pharmacological%20interventions&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Heumann,%20Rolf&rft.date=2014-08&rft.volume=130&rft.issue=4&rft.spage=472&rft.epage=489&rft.pages=472-489&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/jnc.12751&rft_dat=%3Cproquest_cross%3E3394708021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551599507&rft_id=info:pmid/24773031&rfr_iscdi=true