Loading…
Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions
Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review s...
Saved in:
Published in: | Journal of neurochemistry 2014-08, Vol.130 (4), p.472-489 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273 |
---|---|
cites | cdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273 |
container_end_page | 489 |
container_issue | 4 |
container_start_page | 472 |
container_title | Journal of neurochemistry |
container_volume | 130 |
creator | Heumann, Rolf Moratalla, Rosario Herrero, Maria Trinidad Chakrabarty, Koushik Drucker‐Colín, René Garcia‐Montes, Jose Ruben Simola, Nicola Morelli, Micaela |
description | Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations. |
doi_str_mv | 10.1111/jnc.12751 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560137948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3394708021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</originalsourceid><addsrcrecordid>eNqNkc9O3DAQh60KBAvlwAtUkThADwGPHdsbbtXyrwi1HOBYRY7jFG8Te-vZgPbGI_QZeZJ6WeCAVKm-jKz59I1mfoTsAj2E9I6m3hwCUwI-kBEUCvICRLlGRpQylnNasE2yhTilFGQhYYNsskIpTjmMyI-TBf5y3qLTmfPZtY7ph8HvY9Y4tBrtcdZbc6e9wx4z7ZvMDDFaP8988E-Pf2Z3OvbahC78dEZ3STK38T71XfD4kay3ukO781K3ye3Z6c3kIr_6fv518uUqN4WQkDNTCmOMLAF0C2bc1o2yrNVWUUPLugQpS9XUQkquuDZgx1JINVataHhtmOLb5GDlncXwe7A4r3qHxnad9jYMWIGQFLgqi_F_oIJxJZQSCd17h07DEH1aZEmlE5eCLmd_XlEmBsRo22oWXa_jogJaLeOpUjzVczyJ_fRiHOreNm_kax4JOFoBD66zi3-bqstvk5XyL43fmiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551599507</pqid></control><display><type>article</type><title>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heumann, Rolf ; Moratalla, Rosario ; Herrero, Maria Trinidad ; Chakrabarty, Koushik ; Drucker‐Colín, René ; Garcia‐Montes, Jose Ruben ; Simola, Nicola ; Morelli, Micaela</creator><creatorcontrib>Heumann, Rolf ; Moratalla, Rosario ; Herrero, Maria Trinidad ; Chakrabarty, Koushik ; Drucker‐Colín, René ; Garcia‐Montes, Jose Ruben ; Simola, Nicola ; Morelli, Micaela</creatorcontrib><description>Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/jnc.12751</identifier><identifier>PMID: 24773031</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Cannabinoids - pharmacology ; cell replacement therapy ; Cell Transplantation ; Chromatin - drug effects ; Deep Brain Stimulation ; Dopamine ; Dopamine Agents - therapeutic use ; Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology ; Dyskinesias - etiology ; Dyskinesias - physiopathology ; Dyskinesias - therapy ; exercise ; Histones - metabolism ; Humans ; Levodopa - pharmacology ; Levodopa - therapeutic use ; L‐DOPA ; Magnetic fields ; Motor Activity - physiology ; Neurochemistry ; Parkinson Disease - complications ; Parkinson Disease - physiopathology ; Parkinson Disease - therapy ; Parkinson's disease ; Phosphorylation ; Psychomotor Performance - physiology ; Receptors, Dopamine D1 - drug effects ; Receptors, Dopamine D1 - metabolism ; Signal Transduction - drug effects ; striatum ; transcranial magnetic field stimulation ; Transcranial Magnetic Stimulation</subject><ispartof>Journal of neurochemistry, 2014-08, Vol.130 (4), p.472-489</ispartof><rights>2014 International Society for Neurochemistry</rights><rights>2014 International Society for Neurochemistry.</rights><rights>Copyright © 2014 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</citedby><cites>FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24773031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heumann, Rolf</creatorcontrib><creatorcontrib>Moratalla, Rosario</creatorcontrib><creatorcontrib>Herrero, Maria Trinidad</creatorcontrib><creatorcontrib>Chakrabarty, Koushik</creatorcontrib><creatorcontrib>Drucker‐Colín, René</creatorcontrib><creatorcontrib>Garcia‐Montes, Jose Ruben</creatorcontrib><creatorcontrib>Simola, Nicola</creatorcontrib><creatorcontrib>Morelli, Micaela</creatorcontrib><title>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.</description><subject>Animals</subject><subject>Cannabinoids - pharmacology</subject><subject>cell replacement therapy</subject><subject>Cell Transplantation</subject><subject>Chromatin - drug effects</subject><subject>Deep Brain Stimulation</subject><subject>Dopamine</subject><subject>Dopamine Agents - therapeutic use</subject><subject>Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology</subject><subject>Dyskinesias - etiology</subject><subject>Dyskinesias - physiopathology</subject><subject>Dyskinesias - therapy</subject><subject>exercise</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Levodopa - pharmacology</subject><subject>Levodopa - therapeutic use</subject><subject>L‐DOPA</subject><subject>Magnetic fields</subject><subject>Motor Activity - physiology</subject><subject>Neurochemistry</subject><subject>Parkinson Disease - complications</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson Disease - therapy</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Psychomotor Performance - physiology</subject><subject>Receptors, Dopamine D1 - drug effects</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>striatum</subject><subject>transcranial magnetic field stimulation</subject><subject>Transcranial Magnetic Stimulation</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9O3DAQh60KBAvlwAtUkThADwGPHdsbbtXyrwi1HOBYRY7jFG8Te-vZgPbGI_QZeZJ6WeCAVKm-jKz59I1mfoTsAj2E9I6m3hwCUwI-kBEUCvICRLlGRpQylnNasE2yhTilFGQhYYNsskIpTjmMyI-TBf5y3qLTmfPZtY7ph8HvY9Y4tBrtcdZbc6e9wx4z7ZvMDDFaP8988E-Pf2Z3OvbahC78dEZ3STK38T71XfD4kay3ukO781K3ye3Z6c3kIr_6fv518uUqN4WQkDNTCmOMLAF0C2bc1o2yrNVWUUPLugQpS9XUQkquuDZgx1JINVataHhtmOLb5GDlncXwe7A4r3qHxnad9jYMWIGQFLgqi_F_oIJxJZQSCd17h07DEH1aZEmlE5eCLmd_XlEmBsRo22oWXa_jogJaLeOpUjzVczyJ_fRiHOreNm_kax4JOFoBD66zi3-bqstvk5XyL43fmiE</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Heumann, Rolf</creator><creator>Moratalla, Rosario</creator><creator>Herrero, Maria Trinidad</creator><creator>Chakrabarty, Koushik</creator><creator>Drucker‐Colín, René</creator><creator>Garcia‐Montes, Jose Ruben</creator><creator>Simola, Nicola</creator><creator>Morelli, Micaela</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201408</creationdate><title>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</title><author>Heumann, Rolf ; Moratalla, Rosario ; Herrero, Maria Trinidad ; Chakrabarty, Koushik ; Drucker‐Colín, René ; Garcia‐Montes, Jose Ruben ; Simola, Nicola ; Morelli, Micaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cannabinoids - pharmacology</topic><topic>cell replacement therapy</topic><topic>Cell Transplantation</topic><topic>Chromatin - drug effects</topic><topic>Deep Brain Stimulation</topic><topic>Dopamine</topic><topic>Dopamine Agents - therapeutic use</topic><topic>Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology</topic><topic>Dyskinesias - etiology</topic><topic>Dyskinesias - physiopathology</topic><topic>Dyskinesias - therapy</topic><topic>exercise</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Levodopa - pharmacology</topic><topic>Levodopa - therapeutic use</topic><topic>L‐DOPA</topic><topic>Magnetic fields</topic><topic>Motor Activity - physiology</topic><topic>Neurochemistry</topic><topic>Parkinson Disease - complications</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson Disease - therapy</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Psychomotor Performance - physiology</topic><topic>Receptors, Dopamine D1 - drug effects</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>striatum</topic><topic>transcranial magnetic field stimulation</topic><topic>Transcranial Magnetic Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heumann, Rolf</creatorcontrib><creatorcontrib>Moratalla, Rosario</creatorcontrib><creatorcontrib>Herrero, Maria Trinidad</creatorcontrib><creatorcontrib>Chakrabarty, Koushik</creatorcontrib><creatorcontrib>Drucker‐Colín, René</creatorcontrib><creatorcontrib>Garcia‐Montes, Jose Ruben</creatorcontrib><creatorcontrib>Simola, Nicola</creatorcontrib><creatorcontrib>Morelli, Micaela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heumann, Rolf</au><au>Moratalla, Rosario</au><au>Herrero, Maria Trinidad</au><au>Chakrabarty, Koushik</au><au>Drucker‐Colín, René</au><au>Garcia‐Montes, Jose Ruben</au><au>Simola, Nicola</au><au>Morelli, Micaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2014-08</date><risdate>2014</risdate><volume>130</volume><issue>4</issue><spage>472</spage><epage>489</epage><pages>472-489</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine‐cAMP‐regulated neuronal phosphoprotein, extracellular signal‐regulated kinase, mammalian target of rapamycin, mitogen and stress‐activated kinase‐1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non‐pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease‐associated motor symptoms, especially the development of dyskinesia.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.
This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non‐pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24773031</pmid><doi>10.1111/jnc.12751</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2014-08, Vol.130 (4), p.472-489 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560137948 |
source | Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Cannabinoids - pharmacology cell replacement therapy Cell Transplantation Chromatin - drug effects Deep Brain Stimulation Dopamine Dopamine Agents - therapeutic use Dopamine and cAMP-Regulated Phosphoprotein 32 - physiology Dyskinesias - etiology Dyskinesias - physiopathology Dyskinesias - therapy exercise Histones - metabolism Humans Levodopa - pharmacology Levodopa - therapeutic use L‐DOPA Magnetic fields Motor Activity - physiology Neurochemistry Parkinson Disease - complications Parkinson Disease - physiopathology Parkinson Disease - therapy Parkinson's disease Phosphorylation Psychomotor Performance - physiology Receptors, Dopamine D1 - drug effects Receptors, Dopamine D1 - metabolism Signal Transduction - drug effects striatum transcranial magnetic field stimulation Transcranial Magnetic Stimulation |
title | Dyskinesia in Parkinson's disease: mechanisms and current non‐pharmacological interventions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dyskinesia%20in%20Parkinson's%20disease:%20mechanisms%20and%20current%20non%E2%80%90pharmacological%20interventions&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Heumann,%20Rolf&rft.date=2014-08&rft.volume=130&rft.issue=4&rft.spage=472&rft.epage=489&rft.pages=472-489&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/jnc.12751&rft_dat=%3Cproquest_cross%3E3394708021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4561-2c95ccc6911af1c8fbd7e2fae70c09b916697db566373ac1e8656787f5d3bc273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551599507&rft_id=info:pmid/24773031&rfr_iscdi=true |