Loading…

Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules

We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated syste...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2014-09, Vol.15 (13), p.2672-2675
Main Authors: Meng, Yan, Dai, Xing, Xin, Minsi, Tian, Chuanjin, Liu, Hang, Jin, Mingxing, Wang, Zhigang, Zhang, Rui-Qin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3
container_end_page 2675
container_issue 13
container_start_page 2672
container_title Chemphyschem
container_volume 15
creator Meng, Yan
Dai, Xing
Xin, Minsi
Tian, Chuanjin
Liu, Hang
Jin, Mingxing
Wang, Zhigang
Zhang, Rui-Qin
description We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule. So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.
doi_str_mv 10.1002/cphc.201402104
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1561033461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561033461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3</originalsourceid><addsrcrecordid>eNqFkEtvEzEURi0EoqWwZYlGQkhsJly_5rFEozSt2kClRrC0PLZHcXE8qT1Dyb_H06QBsWFlWz7fvZ8OQm8xzDAA-aS2azUjgBkQDOwZOsWM1nlZMPz8cGeE8hP0KsY7AKigxC_RCWE1Z2VFTtHV3P-0ofcb4wfp8qb3nfVmeuWXXo_K6Ox2kK11dthlc7-WXj3-Zn2XNWsbpMuWvTNqdCa-Ri866aJ5czjP0Op8vmou8uuvi8vm83WuOFCWsw4XVQuFBFYqxhkuStqmZlhpzbVhHSGpW1dRkFoZ2lZtqSpdA2FFq1lLz9DH_dht6O9HEwexsVEZ56Q3_RgF5gUGSlmBE_r-H_SuH4NP5SYKOK-TukTN9pQKfYzBdGIb7EaGncAgJstisiyOllPg3WHs2G6MPuJPWhPw4QDIqKTrQtJm4x-uKkte04mr99yDdWb3n7Wiublo_i6R77M2DubXMSvDD5GEllx8_7IQq5tvt8srWIoF_Q3rt6P3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560559201</pqid></control><display><type>article</type><title>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Meng, Yan ; Dai, Xing ; Xin, Minsi ; Tian, Chuanjin ; Liu, Hang ; Jin, Mingxing ; Wang, Zhigang ; Zhang, Rui-Qin</creator><creatorcontrib>Meng, Yan ; Dai, Xing ; Xin, Minsi ; Tian, Chuanjin ; Liu, Hang ; Jin, Mingxing ; Wang, Zhigang ; Zhang, Rui-Qin</creatorcontrib><description>We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule. So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201402104</identifier><identifier>PMID: 24954782</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Chemistry ; chiral transition process ; confined environment ; Cross-disciplinary physics: materials science; rheology ; energy barrier ; Exact sciences and technology ; Fullerenes - chemistry ; Fullerenes and related materials; diamonds, graphite ; General and physical chemistry ; Hydrocarbons, Fluorinated - chemistry ; Materials science ; oniom ; Phenanthrenes - chemistry ; Physics ; Quantum Theory ; Specific materials ; stability</subject><ispartof>Chemphyschem, 2014-09, Vol.15 (13), p.2672-2675</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28775932$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24954782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Yan</creatorcontrib><creatorcontrib>Dai, Xing</creatorcontrib><creatorcontrib>Xin, Minsi</creatorcontrib><creatorcontrib>Tian, Chuanjin</creatorcontrib><creatorcontrib>Liu, Hang</creatorcontrib><creatorcontrib>Jin, Mingxing</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Zhang, Rui-Qin</creatorcontrib><title>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule. So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.</description><subject>Chemistry</subject><subject>chiral transition process</subject><subject>confined environment</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>energy barrier</subject><subject>Exact sciences and technology</subject><subject>Fullerenes - chemistry</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General and physical chemistry</subject><subject>Hydrocarbons, Fluorinated - chemistry</subject><subject>Materials science</subject><subject>oniom</subject><subject>Phenanthrenes - chemistry</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Specific materials</subject><subject>stability</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvEzEURi0EoqWwZYlGQkhsJly_5rFEozSt2kClRrC0PLZHcXE8qT1Dyb_H06QBsWFlWz7fvZ8OQm8xzDAA-aS2azUjgBkQDOwZOsWM1nlZMPz8cGeE8hP0KsY7AKigxC_RCWE1Z2VFTtHV3P-0ofcb4wfp8qb3nfVmeuWXXo_K6Ox2kK11dthlc7-WXj3-Zn2XNWsbpMuWvTNqdCa-Ri866aJ5czjP0Op8vmou8uuvi8vm83WuOFCWsw4XVQuFBFYqxhkuStqmZlhpzbVhHSGpW1dRkFoZ2lZtqSpdA2FFq1lLz9DH_dht6O9HEwexsVEZ56Q3_RgF5gUGSlmBE_r-H_SuH4NP5SYKOK-TukTN9pQKfYzBdGIb7EaGncAgJstisiyOllPg3WHs2G6MPuJPWhPw4QDIqKTrQtJm4x-uKkte04mr99yDdWb3n7Wiublo_i6R77M2DubXMSvDD5GEllx8_7IQq5tvt8srWIoF_Q3rt6P3</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Meng, Yan</creator><creator>Dai, Xing</creator><creator>Xin, Minsi</creator><creator>Tian, Chuanjin</creator><creator>Liu, Hang</creator><creator>Jin, Mingxing</creator><creator>Wang, Zhigang</creator><creator>Zhang, Rui-Qin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20140915</creationdate><title>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</title><author>Meng, Yan ; Dai, Xing ; Xin, Minsi ; Tian, Chuanjin ; Liu, Hang ; Jin, Mingxing ; Wang, Zhigang ; Zhang, Rui-Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry</topic><topic>chiral transition process</topic><topic>confined environment</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>energy barrier</topic><topic>Exact sciences and technology</topic><topic>Fullerenes - chemistry</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General and physical chemistry</topic><topic>Hydrocarbons, Fluorinated - chemistry</topic><topic>Materials science</topic><topic>oniom</topic><topic>Phenanthrenes - chemistry</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Specific materials</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yan</creatorcontrib><creatorcontrib>Dai, Xing</creatorcontrib><creatorcontrib>Xin, Minsi</creatorcontrib><creatorcontrib>Tian, Chuanjin</creatorcontrib><creatorcontrib>Liu, Hang</creatorcontrib><creatorcontrib>Jin, Mingxing</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Zhang, Rui-Qin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yan</au><au>Dai, Xing</au><au>Xin, Minsi</au><au>Tian, Chuanjin</au><au>Liu, Hang</au><au>Jin, Mingxing</au><au>Wang, Zhigang</au><au>Zhang, Rui-Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2014-09-15</date><risdate>2014</risdate><volume>15</volume><issue>13</issue><spage>2672</spage><epage>2675</epage><pages>2672-2675</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule. So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24954782</pmid><doi>10.1002/cphc.201402104</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2014-09, Vol.15 (13), p.2672-2675
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_1561033461
source Wiley-Blackwell Read & Publish Collection
subjects Chemistry
chiral transition process
confined environment
Cross-disciplinary physics: materials science
rheology
energy barrier
Exact sciences and technology
Fullerenes - chemistry
Fullerenes and related materials
diamonds, graphite
General and physical chemistry
Hydrocarbons, Fluorinated - chemistry
Materials science
oniom
Phenanthrenes - chemistry
Physics
Quantum Theory
Specific materials
stability
title Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental-Confinement-Induced%20Stability%20Enhancement%20of%20Chiral%20Molecules&rft.jtitle=Chemphyschem&rft.au=Meng,%20Yan&rft.date=2014-09-15&rft.volume=15&rft.issue=13&rft.spage=2672&rft.epage=2675&rft.pages=2672-2675&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201402104&rft_dat=%3Cproquest_cross%3E1561033461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1560559201&rft_id=info:pmid/24954782&rfr_iscdi=true