Loading…
Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules
We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated syste...
Saved in:
Published in: | Chemphyschem 2014-09, Vol.15 (13), p.2672-2675 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3 |
container_end_page | 2675 |
container_issue | 13 |
container_start_page | 2672 |
container_title | Chemphyschem |
container_volume | 15 |
creator | Meng, Yan Dai, Xing Xin, Minsi Tian, Chuanjin Liu, Hang Jin, Mingxing Wang, Zhigang Zhang, Rui-Qin |
description | We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule.
So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers. |
doi_str_mv | 10.1002/cphc.201402104 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1561033461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561033461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3</originalsourceid><addsrcrecordid>eNqFkEtvEzEURi0EoqWwZYlGQkhsJly_5rFEozSt2kClRrC0PLZHcXE8qT1Dyb_H06QBsWFlWz7fvZ8OQm8xzDAA-aS2azUjgBkQDOwZOsWM1nlZMPz8cGeE8hP0KsY7AKigxC_RCWE1Z2VFTtHV3P-0ofcb4wfp8qb3nfVmeuWXXo_K6Ox2kK11dthlc7-WXj3-Zn2XNWsbpMuWvTNqdCa-Ri866aJ5czjP0Op8vmou8uuvi8vm83WuOFCWsw4XVQuFBFYqxhkuStqmZlhpzbVhHSGpW1dRkFoZ2lZtqSpdA2FFq1lLz9DH_dht6O9HEwexsVEZ56Q3_RgF5gUGSlmBE_r-H_SuH4NP5SYKOK-TukTN9pQKfYzBdGIb7EaGncAgJstisiyOllPg3WHs2G6MPuJPWhPw4QDIqKTrQtJm4x-uKkte04mr99yDdWb3n7Wiublo_i6R77M2DubXMSvDD5GEllx8_7IQq5tvt8srWIoF_Q3rt6P3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560559201</pqid></control><display><type>article</type><title>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Meng, Yan ; Dai, Xing ; Xin, Minsi ; Tian, Chuanjin ; Liu, Hang ; Jin, Mingxing ; Wang, Zhigang ; Zhang, Rui-Qin</creator><creatorcontrib>Meng, Yan ; Dai, Xing ; Xin, Minsi ; Tian, Chuanjin ; Liu, Hang ; Jin, Mingxing ; Wang, Zhigang ; Zhang, Rui-Qin</creatorcontrib><description>We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule.
So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201402104</identifier><identifier>PMID: 24954782</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Chemistry ; chiral transition process ; confined environment ; Cross-disciplinary physics: materials science; rheology ; energy barrier ; Exact sciences and technology ; Fullerenes - chemistry ; Fullerenes and related materials; diamonds, graphite ; General and physical chemistry ; Hydrocarbons, Fluorinated - chemistry ; Materials science ; oniom ; Phenanthrenes - chemistry ; Physics ; Quantum Theory ; Specific materials ; stability</subject><ispartof>Chemphyschem, 2014-09, Vol.15 (13), p.2672-2675</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28775932$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24954782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Yan</creatorcontrib><creatorcontrib>Dai, Xing</creatorcontrib><creatorcontrib>Xin, Minsi</creatorcontrib><creatorcontrib>Tian, Chuanjin</creatorcontrib><creatorcontrib>Liu, Hang</creatorcontrib><creatorcontrib>Jin, Mingxing</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Zhang, Rui-Qin</creatorcontrib><title>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule.
So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.</description><subject>Chemistry</subject><subject>chiral transition process</subject><subject>confined environment</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>energy barrier</subject><subject>Exact sciences and technology</subject><subject>Fullerenes - chemistry</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General and physical chemistry</subject><subject>Hydrocarbons, Fluorinated - chemistry</subject><subject>Materials science</subject><subject>oniom</subject><subject>Phenanthrenes - chemistry</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Specific materials</subject><subject>stability</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtvEzEURi0EoqWwZYlGQkhsJly_5rFEozSt2kClRrC0PLZHcXE8qT1Dyb_H06QBsWFlWz7fvZ8OQm8xzDAA-aS2azUjgBkQDOwZOsWM1nlZMPz8cGeE8hP0KsY7AKigxC_RCWE1Z2VFTtHV3P-0ofcb4wfp8qb3nfVmeuWXXo_K6Ox2kK11dthlc7-WXj3-Zn2XNWsbpMuWvTNqdCa-Ri866aJ5czjP0Op8vmou8uuvi8vm83WuOFCWsw4XVQuFBFYqxhkuStqmZlhpzbVhHSGpW1dRkFoZ2lZtqSpdA2FFq1lLz9DH_dht6O9HEwexsVEZ56Q3_RgF5gUGSlmBE_r-H_SuH4NP5SYKOK-TukTN9pQKfYzBdGIb7EaGncAgJstisiyOllPg3WHs2G6MPuJPWhPw4QDIqKTrQtJm4x-uKkte04mr99yDdWb3n7Wiublo_i6R77M2DubXMSvDD5GEllx8_7IQq5tvt8srWIoF_Q3rt6P3</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Meng, Yan</creator><creator>Dai, Xing</creator><creator>Xin, Minsi</creator><creator>Tian, Chuanjin</creator><creator>Liu, Hang</creator><creator>Jin, Mingxing</creator><creator>Wang, Zhigang</creator><creator>Zhang, Rui-Qin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20140915</creationdate><title>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</title><author>Meng, Yan ; Dai, Xing ; Xin, Minsi ; Tian, Chuanjin ; Liu, Hang ; Jin, Mingxing ; Wang, Zhigang ; Zhang, Rui-Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemistry</topic><topic>chiral transition process</topic><topic>confined environment</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>energy barrier</topic><topic>Exact sciences and technology</topic><topic>Fullerenes - chemistry</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General and physical chemistry</topic><topic>Hydrocarbons, Fluorinated - chemistry</topic><topic>Materials science</topic><topic>oniom</topic><topic>Phenanthrenes - chemistry</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Specific materials</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yan</creatorcontrib><creatorcontrib>Dai, Xing</creatorcontrib><creatorcontrib>Xin, Minsi</creatorcontrib><creatorcontrib>Tian, Chuanjin</creatorcontrib><creatorcontrib>Liu, Hang</creatorcontrib><creatorcontrib>Jin, Mingxing</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Zhang, Rui-Qin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yan</au><au>Dai, Xing</au><au>Xin, Minsi</au><au>Tian, Chuanjin</au><au>Liu, Hang</au><au>Jin, Mingxing</au><au>Wang, Zhigang</au><au>Zhang, Rui-Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2014-09-15</date><risdate>2014</risdate><volume>15</volume><issue>13</issue><spage>2672</spage><epage>2675</epage><pages>2672-2675</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm−1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol−1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule.
So lonely: ONIOM calculation shows that by changing from isolated to confinement conditions for chiral difluorobenzo[c]phenanthrene molecule enantiomers can stabilize chiral molecular enantiomers.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24954782</pmid><doi>10.1002/cphc.201402104</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2014-09, Vol.15 (13), p.2672-2675 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_1561033461 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Chemistry chiral transition process confined environment Cross-disciplinary physics: materials science rheology energy barrier Exact sciences and technology Fullerenes - chemistry Fullerenes and related materials diamonds, graphite General and physical chemistry Hydrocarbons, Fluorinated - chemistry Materials science oniom Phenanthrenes - chemistry Physics Quantum Theory Specific materials stability |
title | Environmental-Confinement-Induced Stability Enhancement of Chiral Molecules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental-Confinement-Induced%20Stability%20Enhancement%20of%20Chiral%20Molecules&rft.jtitle=Chemphyschem&rft.au=Meng,%20Yan&rft.date=2014-09-15&rft.volume=15&rft.issue=13&rft.spage=2672&rft.epage=2675&rft.pages=2672-2675&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201402104&rft_dat=%3Cproquest_cross%3E1561033461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5034-4f168b06a047c4541673b0801cdd5de4f22478f830adce3b8b7c8d90246bd4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1560559201&rft_id=info:pmid/24954782&rfr_iscdi=true |