Loading…
New Lipophilic Polyelectrolyte Gels Containing Quaternary Ammonium Salt with Superabsorbent Capacity for Organic Solvents
Water and soil pollution by organic pollutants from petrochemical plants has become one of the major environmental problems in recent years. Lipophilic polyelectrolyte gels with ionic groups dissociable in nonpolar organic solvents show an enhanced swelling ability in a corresponding media attribute...
Saved in:
Published in: | ACS applied materials & interfaces 2014-09, Vol.6 (17), p.14894-14902 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water and soil pollution by organic pollutants from petrochemical plants has become one of the major environmental problems in recent years. Lipophilic polyelectrolyte gels with ionic groups dissociable in nonpolar organic solvents show an enhanced swelling ability in a corresponding media attributed to the electrostatic repulsion and osmotic pressure provided by dissociated ionic groups. Here, we synthesized new lipophilic polyelectrolyte gels based on an easily available electrolyte monomer, methacryloxyethyl dimethyloctane ammonium trifluoromethanesulfonimide (MODAT), and a lipophilic neutral monomer, dodecyl acrylate by radiation-induced polymerization and cross-linking. The resultant lipophilic polyelectrolyte gels could absorb plenty of organic solvents with dielectric constants lower than 20 and exhibited a high absorbing ability at a wide range of temperatures (0–40 °C). The maximum swelling degree could reach as high as 200 g/g in some media, such as 1,2-dichloroethane (199.4 g/g) and dichloromethane (204 g/g), which was much higher than that of the nonionic gel without the addition of MODAT. Moreover, the resultant lipophilic polyelectrolyte gels could release most of the absorbed solvents within several hours and then be reused. It is expected that this new type of lipophilic polyelectrolyte gels may be a suitable candidate as organic pollutant absorbents. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am504102r |