Loading…

EFFECT OF DEFICIT IRRIGATION ON YIELD, RELATIVE LEAF WATER CONTENT, LEAF PROLINE ACCUMULATION AND CHLOROPHYLL STABILITY INDEX OF COTTON–MAIZE CROPPING SEQUENCE

Water stress induces some physiological changes in plants and has cumulative effects on crop growth and yield. Field experiments were conducted to study the effect of deficit irrigation (DI) on yield and some physiological parameters in cotton and maize in a sequential cropping system. Creation of s...

Full description

Saved in:
Bibliographic Details
Published in:Experimental agriculture 2014-07, Vol.50 (3), p.407-425
Main Authors: SAMPATHKUMAR, T., PANDIAN, B. J., JEYAKUMAR, P., MANICKASUNDARAM, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water stress induces some physiological changes in plants and has cumulative effects on crop growth and yield. Field experiments were conducted to study the effect of deficit irrigation (DI) on yield and some physiological parameters in cotton and maize in a sequential cropping system. Creation of soil moisture gradient is indispensable to explore the beneficial effects of partial root zone drying (PRD) irrigation and it could be possible only through alternate deficit irrigation (ADI) practice in paired row system of drip layout that is commonly practiced in India. In the present study, PRD and DI concepts (creation of soil moisture gradient) were implemented through ADI at two levels of irrigation using drip system. Maize was sown after cotton under no till condition without disturbing the raised bed and drip layout. Relative leaf water content (RLWC) and chlorophyll stability index (CSI) of cotton and maize were reduced under water stress. A higher level of leaf proline content was observed under severe water-stressed treatments in cotton and maize. RLWC and CSI were highest and leaf proline content was lowest in mild water deficit (ADI at 100% crop evapotranspiration once in three days) irrigation in cotton and maize. The same treatments registered higher values for crop yields, net income and benefit cost ratio for both the crops.
ISSN:0014-4797
1469-4441
DOI:10.1017/S0014479713000598