Loading…
Enhanced Immobilization of Gold Nanoclusters on Graphite
The immobilization of individual biological molecules by metal nanoparticles requires that the particles themselves be immobilized. We introduce a new technique for immobilization of gold clusters based on their binding to small tunnels in a graphite support, themselves created by the implantation o...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-09, Vol.118 (37), p.8182-8187 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The immobilization of individual biological molecules by metal nanoparticles requires that the particles themselves be immobilized. We introduce a new technique for immobilization of gold clusters based on their binding to small tunnels in a graphite support, themselves created by the implantation of small clusters. These tunnels are shown to perform as more effective cluster immobilization sites than point defects on the surface of graphite. The method is tested with atomic force microscopy (AFM) (both contact and noncontact mode) scanning. Size-selected clusters with 923, 561, 309, and 147 atoms have been immobilized and imaged with high-resolution, noncontact AFM. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp500914x |