Loading…
Antifungal drug resistance evoked via RNAi-dependent epimutations
The human fungal pathogen Mucor circinelloides develops spontaneous resistance to an antifungal drug both through mutation and through a newly identified epigenetic RNA-mediated pathway; RNA interference is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants th...
Saved in:
Published in: | Nature (London) 2014-09, Vol.513 (7519), p.555-558 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443 |
container_end_page | 558 |
container_issue | 7519 |
container_start_page | 555 |
container_title | Nature (London) |
container_volume | 513 |
creator | Calo, Silvia Shertz-Wall, Cecelia Lee, Soo Chan Bastidas, Robert J. Nicolás, Francisco E. Granek, Joshua A. Mieczkowski, Piotr Torres-Martínez, Santiago Ruiz-Vázquez, Rosa M. Cardenas, Maria E. Heitman, Joseph |
description | The human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to an antifungal drug both through mutation and through a newly identified epigenetic RNA-mediated pathway; RNA interference is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants that revert to being drug-sensitive once again when grown in the absence of drug.
Epimutants confer drug resistance
RNA interference (RNAi) is a mechanism conserved across eukaryotes that controls multiple cellular functions. This study reports that the opportunistic human pathogen
Mucor circinelloides
can develop spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One is through conventional Mendelian mutation, whereas the other, surprisingly, is via a newly identified epigenetic RNAi-mediated pathway. Joseph Heitman and colleagues show that RNAi is spontaneously triggered to silence a gene,
fkbA
, that encodes the peptidylprolyl isomerase FKBP12. This enzyme interacts with the drug to form a complex that inhibits calcineurin, blocking the transition to hyphae. The resulting drug-resistant 'epimutants' revert to drug sensitivity when grown in the absence of drug.
Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin
1
. Calcineurin inhibition by FK506 blocks
M. circinelloides
transition to hyphae and enforces yeast growth
2
. Mutations in the
fkbA
gene encoding FKBP12 or the calcineurin
cnbR
or
cnaA
genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant
fkbA
small R |
doi_str_mv | 10.1038/nature13575 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566107585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A383856029</galeid><sourcerecordid>A383856029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443</originalsourceid><addsrcrecordid>eNpt0t9r1TAUB_AgirubPvkuRV8U7Uyan30swx-DoTD1OaTtScls07skHfrfL_NOvVdKHgLJJ19ODgehZwSfEkzVO2_SEoBQLvkDtCFMipIJJR-iDcaVKrGi4ggdx3iFMeZEssfoqOJY1rSqN6hpfHJ28YMZiz4sQxEgupiM76CAm_kH9MWNM8Xl58aVPWzB9-BTAVs3LckkN_v4BD2yZozw9H4_Qd8_vP929qm8-PLx_Ky5KDvOZSqhrQ0XlolaEMawZayFlvZMgDJ1ZUBKxYhgFhOjrLC8V7yTNYHKUNW3jNET9GqXuw3z9QIx6cnFDsbReJiXqAkXgmDJFc_05X_0al6Cz9X9VjWhEot_Kv8dtPN2TsF0d6G6oYoqLnBVZ1WuqAE8BDPOHqzLxwf-xYrvtu5a76PTFZRXD5PrVlNfHzzIJsHPNJglRn3-9fLQvtnZLswxBrB6G9xkwi9NsL6bGL03MVk_v-_V0k7Q_7V_RiSDtzsQ85UfIOw1cyXvFtAgxsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566913706</pqid></control><display><type>article</type><title>Antifungal drug resistance evoked via RNAi-dependent epimutations</title><source>Nature</source><creator>Calo, Silvia ; Shertz-Wall, Cecelia ; Lee, Soo Chan ; Bastidas, Robert J. ; Nicolás, Francisco E. ; Granek, Joshua A. ; Mieczkowski, Piotr ; Torres-Martínez, Santiago ; Ruiz-Vázquez, Rosa M. ; Cardenas, Maria E. ; Heitman, Joseph</creator><creatorcontrib>Calo, Silvia ; Shertz-Wall, Cecelia ; Lee, Soo Chan ; Bastidas, Robert J. ; Nicolás, Francisco E. ; Granek, Joshua A. ; Mieczkowski, Piotr ; Torres-Martínez, Santiago ; Ruiz-Vázquez, Rosa M. ; Cardenas, Maria E. ; Heitman, Joseph</creatorcontrib><description>The human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to an antifungal drug both through mutation and through a newly identified epigenetic RNA-mediated pathway; RNA interference is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants that revert to being drug-sensitive once again when grown in the absence of drug.
Epimutants confer drug resistance
RNA interference (RNAi) is a mechanism conserved across eukaryotes that controls multiple cellular functions. This study reports that the opportunistic human pathogen
Mucor circinelloides
can develop spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One is through conventional Mendelian mutation, whereas the other, surprisingly, is via a newly identified epigenetic RNAi-mediated pathway. Joseph Heitman and colleagues show that RNAi is spontaneously triggered to silence a gene,
fkbA
, that encodes the peptidylprolyl isomerase FKBP12. This enzyme interacts with the drug to form a complex that inhibits calcineurin, blocking the transition to hyphae. The resulting drug-resistant 'epimutants' revert to drug sensitivity when grown in the absence of drug.
Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin
1
. Calcineurin inhibition by FK506 blocks
M. circinelloides
transition to hyphae and enforces yeast growth
2
. Mutations in the
fkbA
gene encoding FKBP12 or the calcineurin
cnbR
or
cnaA
genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant
fkbA
small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the
fkbA
mature mRNA as a template to produce antisense
fkbA
RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature13575</identifier><identifier>PMID: 25079329</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/1 ; 38/22 ; 38/23 ; 38/71 ; 38/77 ; 45 ; 631/208/176/2016 ; 631/208/505 ; 631/326/193/2542 ; 82 ; 82/29 ; 82/80 ; Antifungal agents ; Calcineurin - genetics ; Calcineurin - metabolism ; Calcineurin Inhibitors ; Complications and side effects ; Dosage and administration ; Drug resistance ; Drug resistance in microorganisms ; Drug Resistance, Fungal - genetics ; Drug therapy ; Epigenesis, Genetic - genetics ; Fungal infections ; Genes ; Genetic aspects ; Genomes ; Humanities and Social Sciences ; Humans ; Hyphae - drug effects ; Hyphae - genetics ; Hyphae - growth & development ; Hypotheses ; Kinases ; letter ; Microorganisms ; Molecular Sequence Data ; Mucor - drug effects ; Mucor - genetics ; Mucor - growth & development ; Mucormycosis - drug therapy ; Mucormycosis - microbiology ; multidisciplinary ; Mutation ; Mutation - genetics ; Mycoses ; Phenotype ; Proteins ; Risk factors ; RNA Interference ; RNA polymerase ; Science ; Studies ; Tacrolimus - metabolism ; Tacrolimus - pharmacology ; Tacrolimus Binding Protein 1A - deficiency ; Tacrolimus Binding Protein 1A - genetics ; Tacrolimus Binding Protein 1A - metabolism ; Yeasts</subject><ispartof>Nature (London), 2014-09, Vol.513 (7519), p.555-558</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 25, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443</citedby><cites>FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25079329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calo, Silvia</creatorcontrib><creatorcontrib>Shertz-Wall, Cecelia</creatorcontrib><creatorcontrib>Lee, Soo Chan</creatorcontrib><creatorcontrib>Bastidas, Robert J.</creatorcontrib><creatorcontrib>Nicolás, Francisco E.</creatorcontrib><creatorcontrib>Granek, Joshua A.</creatorcontrib><creatorcontrib>Mieczkowski, Piotr</creatorcontrib><creatorcontrib>Torres-Martínez, Santiago</creatorcontrib><creatorcontrib>Ruiz-Vázquez, Rosa M.</creatorcontrib><creatorcontrib>Cardenas, Maria E.</creatorcontrib><creatorcontrib>Heitman, Joseph</creatorcontrib><title>Antifungal drug resistance evoked via RNAi-dependent epimutations</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to an antifungal drug both through mutation and through a newly identified epigenetic RNA-mediated pathway; RNA interference is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants that revert to being drug-sensitive once again when grown in the absence of drug.
Epimutants confer drug resistance
RNA interference (RNAi) is a mechanism conserved across eukaryotes that controls multiple cellular functions. This study reports that the opportunistic human pathogen
Mucor circinelloides
can develop spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One is through conventional Mendelian mutation, whereas the other, surprisingly, is via a newly identified epigenetic RNAi-mediated pathway. Joseph Heitman and colleagues show that RNAi is spontaneously triggered to silence a gene,
fkbA
, that encodes the peptidylprolyl isomerase FKBP12. This enzyme interacts with the drug to form a complex that inhibits calcineurin, blocking the transition to hyphae. The resulting drug-resistant 'epimutants' revert to drug sensitivity when grown in the absence of drug.
Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin
1
. Calcineurin inhibition by FK506 blocks
M. circinelloides
transition to hyphae and enforces yeast growth
2
. Mutations in the
fkbA
gene encoding FKBP12 or the calcineurin
cnbR
or
cnaA
genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant
fkbA
small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the
fkbA
mature mRNA as a template to produce antisense
fkbA
RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.</description><subject>38</subject><subject>38/1</subject><subject>38/22</subject><subject>38/23</subject><subject>38/71</subject><subject>38/77</subject><subject>45</subject><subject>631/208/176/2016</subject><subject>631/208/505</subject><subject>631/326/193/2542</subject><subject>82</subject><subject>82/29</subject><subject>82/80</subject><subject>Antifungal agents</subject><subject>Calcineurin - genetics</subject><subject>Calcineurin - metabolism</subject><subject>Calcineurin Inhibitors</subject><subject>Complications and side effects</subject><subject>Dosage and administration</subject><subject>Drug resistance</subject><subject>Drug resistance in microorganisms</subject><subject>Drug Resistance, Fungal - genetics</subject><subject>Drug therapy</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Fungal infections</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hyphae - drug effects</subject><subject>Hyphae - genetics</subject><subject>Hyphae - growth & development</subject><subject>Hypotheses</subject><subject>Kinases</subject><subject>letter</subject><subject>Microorganisms</subject><subject>Molecular Sequence Data</subject><subject>Mucor - drug effects</subject><subject>Mucor - genetics</subject><subject>Mucor - growth & development</subject><subject>Mucormycosis - drug therapy</subject><subject>Mucormycosis - microbiology</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Mycoses</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>RNA Interference</subject><subject>RNA polymerase</subject><subject>Science</subject><subject>Studies</subject><subject>Tacrolimus - metabolism</subject><subject>Tacrolimus - pharmacology</subject><subject>Tacrolimus Binding Protein 1A - deficiency</subject><subject>Tacrolimus Binding Protein 1A - genetics</subject><subject>Tacrolimus Binding Protein 1A - metabolism</subject><subject>Yeasts</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0t9r1TAUB_AgirubPvkuRV8U7Uyan30swx-DoTD1OaTtScls07skHfrfL_NOvVdKHgLJJ19ODgehZwSfEkzVO2_SEoBQLvkDtCFMipIJJR-iDcaVKrGi4ggdx3iFMeZEssfoqOJY1rSqN6hpfHJ28YMZiz4sQxEgupiM76CAm_kH9MWNM8Xl58aVPWzB9-BTAVs3LckkN_v4BD2yZozw9H4_Qd8_vP929qm8-PLx_Ky5KDvOZSqhrQ0XlolaEMawZayFlvZMgDJ1ZUBKxYhgFhOjrLC8V7yTNYHKUNW3jNET9GqXuw3z9QIx6cnFDsbReJiXqAkXgmDJFc_05X_0al6Cz9X9VjWhEot_Kv8dtPN2TsF0d6G6oYoqLnBVZ1WuqAE8BDPOHqzLxwf-xYrvtu5a76PTFZRXD5PrVlNfHzzIJsHPNJglRn3-9fLQvtnZLswxBrB6G9xkwi9NsL6bGL03MVk_v-_V0k7Q_7V_RiSDtzsQ85UfIOw1cyXvFtAgxsM</recordid><startdate>20140925</startdate><enddate>20140925</enddate><creator>Calo, Silvia</creator><creator>Shertz-Wall, Cecelia</creator><creator>Lee, Soo Chan</creator><creator>Bastidas, Robert J.</creator><creator>Nicolás, Francisco E.</creator><creator>Granek, Joshua A.</creator><creator>Mieczkowski, Piotr</creator><creator>Torres-Martínez, Santiago</creator><creator>Ruiz-Vázquez, Rosa M.</creator><creator>Cardenas, Maria E.</creator><creator>Heitman, Joseph</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140925</creationdate><title>Antifungal drug resistance evoked via RNAi-dependent epimutations</title><author>Calo, Silvia ; Shertz-Wall, Cecelia ; Lee, Soo Chan ; Bastidas, Robert J. ; Nicolás, Francisco E. ; Granek, Joshua A. ; Mieczkowski, Piotr ; Torres-Martínez, Santiago ; Ruiz-Vázquez, Rosa M. ; Cardenas, Maria E. ; Heitman, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>38</topic><topic>38/1</topic><topic>38/22</topic><topic>38/23</topic><topic>38/71</topic><topic>38/77</topic><topic>45</topic><topic>631/208/176/2016</topic><topic>631/208/505</topic><topic>631/326/193/2542</topic><topic>82</topic><topic>82/29</topic><topic>82/80</topic><topic>Antifungal agents</topic><topic>Calcineurin - genetics</topic><topic>Calcineurin - metabolism</topic><topic>Calcineurin Inhibitors</topic><topic>Complications and side effects</topic><topic>Dosage and administration</topic><topic>Drug resistance</topic><topic>Drug resistance in microorganisms</topic><topic>Drug Resistance, Fungal - genetics</topic><topic>Drug therapy</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Fungal infections</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hyphae - drug effects</topic><topic>Hyphae - genetics</topic><topic>Hyphae - growth & development</topic><topic>Hypotheses</topic><topic>Kinases</topic><topic>letter</topic><topic>Microorganisms</topic><topic>Molecular Sequence Data</topic><topic>Mucor - drug effects</topic><topic>Mucor - genetics</topic><topic>Mucor - growth & development</topic><topic>Mucormycosis - drug therapy</topic><topic>Mucormycosis - microbiology</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Mycoses</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>RNA Interference</topic><topic>RNA polymerase</topic><topic>Science</topic><topic>Studies</topic><topic>Tacrolimus - metabolism</topic><topic>Tacrolimus - pharmacology</topic><topic>Tacrolimus Binding Protein 1A - deficiency</topic><topic>Tacrolimus Binding Protein 1A - genetics</topic><topic>Tacrolimus Binding Protein 1A - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calo, Silvia</creatorcontrib><creatorcontrib>Shertz-Wall, Cecelia</creatorcontrib><creatorcontrib>Lee, Soo Chan</creatorcontrib><creatorcontrib>Bastidas, Robert J.</creatorcontrib><creatorcontrib>Nicolás, Francisco E.</creatorcontrib><creatorcontrib>Granek, Joshua A.</creatorcontrib><creatorcontrib>Mieczkowski, Piotr</creatorcontrib><creatorcontrib>Torres-Martínez, Santiago</creatorcontrib><creatorcontrib>Ruiz-Vázquez, Rosa M.</creatorcontrib><creatorcontrib>Cardenas, Maria E.</creatorcontrib><creatorcontrib>Heitman, Joseph</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calo, Silvia</au><au>Shertz-Wall, Cecelia</au><au>Lee, Soo Chan</au><au>Bastidas, Robert J.</au><au>Nicolás, Francisco E.</au><au>Granek, Joshua A.</au><au>Mieczkowski, Piotr</au><au>Torres-Martínez, Santiago</au><au>Ruiz-Vázquez, Rosa M.</au><au>Cardenas, Maria E.</au><au>Heitman, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antifungal drug resistance evoked via RNAi-dependent epimutations</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2014-09-25</date><risdate>2014</risdate><volume>513</volume><issue>7519</issue><spage>555</spage><epage>558</epage><pages>555-558</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to an antifungal drug both through mutation and through a newly identified epigenetic RNA-mediated pathway; RNA interference is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants that revert to being drug-sensitive once again when grown in the absence of drug.
Epimutants confer drug resistance
RNA interference (RNAi) is a mechanism conserved across eukaryotes that controls multiple cellular functions. This study reports that the opportunistic human pathogen
Mucor circinelloides
can develop spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One is through conventional Mendelian mutation, whereas the other, surprisingly, is via a newly identified epigenetic RNAi-mediated pathway. Joseph Heitman and colleagues show that RNAi is spontaneously triggered to silence a gene,
fkbA
, that encodes the peptidylprolyl isomerase FKBP12. This enzyme interacts with the drug to form a complex that inhibits calcineurin, blocking the transition to hyphae. The resulting drug-resistant 'epimutants' revert to drug sensitivity when grown in the absence of drug.
Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen
Mucor circinelloides
develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin
1
. Calcineurin inhibition by FK506 blocks
M. circinelloides
transition to hyphae and enforces yeast growth
2
. Mutations in the
fkbA
gene encoding FKBP12 or the calcineurin
cnbR
or
cnaA
genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the
fkbA
gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant
fkbA
small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the
fkbA
mature mRNA as a template to produce antisense
fkbA
RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25079329</pmid><doi>10.1038/nature13575</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2014-09, Vol.513 (7519), p.555-558 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566107585 |
source | Nature |
subjects | 38 38/1 38/22 38/23 38/71 38/77 45 631/208/176/2016 631/208/505 631/326/193/2542 82 82/29 82/80 Antifungal agents Calcineurin - genetics Calcineurin - metabolism Calcineurin Inhibitors Complications and side effects Dosage and administration Drug resistance Drug resistance in microorganisms Drug Resistance, Fungal - genetics Drug therapy Epigenesis, Genetic - genetics Fungal infections Genes Genetic aspects Genomes Humanities and Social Sciences Humans Hyphae - drug effects Hyphae - genetics Hyphae - growth & development Hypotheses Kinases letter Microorganisms Molecular Sequence Data Mucor - drug effects Mucor - genetics Mucor - growth & development Mucormycosis - drug therapy Mucormycosis - microbiology multidisciplinary Mutation Mutation - genetics Mycoses Phenotype Proteins Risk factors RNA Interference RNA polymerase Science Studies Tacrolimus - metabolism Tacrolimus - pharmacology Tacrolimus Binding Protein 1A - deficiency Tacrolimus Binding Protein 1A - genetics Tacrolimus Binding Protein 1A - metabolism Yeasts |
title | Antifungal drug resistance evoked via RNAi-dependent epimutations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antifungal%20drug%20resistance%20evoked%20via%20RNAi-dependent%20epimutations&rft.jtitle=Nature%20(London)&rft.au=Calo,%20Silvia&rft.date=2014-09-25&rft.volume=513&rft.issue=7519&rft.spage=555&rft.epage=558&rft.pages=555-558&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature13575&rft_dat=%3Cgale_proqu%3EA383856029%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-eb9a56f46961440f44beb3d46e8a92ae7784164f01a8f6f5d85c791e2a38db443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566913706&rft_id=info:pmid/25079329&rft_galeid=A383856029&rfr_iscdi=true |