Loading…
Atomically resolved orientational ordering of C60 molecules on epitaxial graphene on Cu(111)
A detailed understanding of interactions between molecules and graphene is one of the key issues for tailoring the properties of graphene-based molecular devices, because the electronic and structural properties of molecular layers on surfaces are determined by intermolecular and molecule-substrate...
Saved in:
Published in: | Nanoscale 2014-10, Vol.6 (20), p.11835-11840 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A detailed understanding of interactions between molecules and graphene is one of the key issues for tailoring the properties of graphene-based molecular devices, because the electronic and structural properties of molecular layers on surfaces are determined by intermolecular and molecule-substrate interactions. Here, we present the atomically resolved experimental measurements of the self-assembled fullerene molecules on single-layer graphene on Cu(111). Fullerene molecules form a (4 Ă— 4) superstructure on graphene/Cu(111), revealing only single molecular orientation. We can resolve the exact adsorption site and the configuration of fullerene by means of low-temperature scanning tunnelling microscopy (LT-STM) and density functional theory (DFT) calculations. The adsorption orientation can be explained in terms of the competition between intermolecular interactions and molecule-substrate interactions, where strong Coulomb interactions among the fullerenes determine the in-plane orientation of the fullerene. Our results provide important implications for developing carbon-based organic devices using a graphene template in the future. |
---|---|
ISSN: | 2040-3372 |
DOI: | 10.1039/c4nr03249g |