Loading…
Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans
Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3 , on mouse chromosome 12. On a NIH/OlaHsd gene...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2014-05, Vol.111 (21), p.7723-7728 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653 |
container_end_page | 7728 |
container_issue | 21 |
container_start_page | 7723 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Kawasaki, Kyoko Freimuth, Julia Meyer, Dominique S. Lee, Marie M. Tochimoto-Okamoto, Akiko Benzinou, Michael Clermont, Frederic F. Wu, Gloria Roy, Ritu Letteboer, Tom G. W. van Amstel, Johannes Kristian Ploos Giraud, Sophie Dupuis-Girod, Sophie Lesca, Gaeten Westermann, Cornelius J. J. Coffey, Robert J. Akhurst, Rosemary J. |
description | Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3 , on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b C⁵⁷ haplotype suppresses prenatal lethality of Tgfb1 ⁻/⁻ embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFβRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFβRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFβR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFβ signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFβ/bone morphogenetic protein receptor genes, ENG , encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFβ-regulated vascular disease. |
doi_str_mv | 10.1073/pnas.1318761111 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566832928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23774666</jstor_id><sourcerecordid>23774666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653</originalsourceid><addsrcrecordid>eNqNkc9uEzEQh1cIRNPCmRPgYy9pPbbXfy5IVUUDUiUOtGdrsuvduNq1g72plNfiQXgmHCUkcMOXOfibTzPzq6p3QK-AKn69DpivgINWEsp7Uc2AGphLYejLakYpU3MtmDirznN-opSaWtPX1RkTGhiwelalhQtu8g15xuQxTJnEjty0OIIire86l1yYPA7DliTXbwacHHlY3P36SbLvAw4-9GSKZIwF3hZJbgqTyBqnVRxivyU-kNE3jmBoyWozYshvqlcdDtm9PdSL6vHu88Ptl_n9t8XX25v7eSOMnOYG6pq3y0ZScJppNG0noRW6cdhyqnQt284ZtwTeUCNFq5fCoENQAJ1ZyppfVJ_23vVmObq2KYskHOw6-RHT1kb09t-f4Fe2j89WUEFro4vg8iBI8cfG5cmOPjduGDC4uMkWaik1Z4b9D8qFMowDLej1Hm1SzDm57jgRULsL1e5CtadQS8eHvxc58n9SLMDHA7DrPOoALAOrFOOFeL8nnvIU08nAlRJSypOhw2ixTz7bx--MgqQUBDflmr8BATK9Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534792310</pqid></control><display><type>article</type><title>Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans</title><source>NCBI_PubMed Central(免费)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kawasaki, Kyoko ; Freimuth, Julia ; Meyer, Dominique S. ; Lee, Marie M. ; Tochimoto-Okamoto, Akiko ; Benzinou, Michael ; Clermont, Frederic F. ; Wu, Gloria ; Roy, Ritu ; Letteboer, Tom G. W. ; van Amstel, Johannes Kristian Ploos ; Giraud, Sophie ; Dupuis-Girod, Sophie ; Lesca, Gaeten ; Westermann, Cornelius J. J. ; Coffey, Robert J. ; Akhurst, Rosemary J.</creator><creatorcontrib>Kawasaki, Kyoko ; Freimuth, Julia ; Meyer, Dominique S. ; Lee, Marie M. ; Tochimoto-Okamoto, Akiko ; Benzinou, Michael ; Clermont, Frederic F. ; Wu, Gloria ; Roy, Ritu ; Letteboer, Tom G. W. ; van Amstel, Johannes Kristian Ploos ; Giraud, Sophie ; Dupuis-Girod, Sophie ; Lesca, Gaeten ; Westermann, Cornelius J. J. ; Coffey, Robert J. ; Akhurst, Rosemary J.</creatorcontrib><description>Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3 , on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b C⁵⁷ haplotype suppresses prenatal lethality of Tgfb1 ⁻/⁻ embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFβRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFβRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFβR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFβ signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFβ/bone morphogenetic protein receptor genes, ENG , encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFβ-regulated vascular disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1318761111</identifier><identifier>PMID: 24812125</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ADAM Proteins - genetics ; ADAM Proteins - metabolism ; ADAM17 Protein ; Alleles ; Angiogenesis ; Animals ; Biological Sciences ; Blood Vessels - pathology ; Gene expression regulation ; Gene Expression Regulation - genetics ; Gene Expression Regulation - physiology ; Genetic loci ; Genetic mutation ; Genetic Variation ; Hereditary hemorrhagic telangiectasia ; Human genetics ; Humans ; Immunohistochemistry ; Luciferases ; Medical genetics ; Mice ; Mice, Inbred C57BL ; NIH 3T3 Cells ; Signal Transduction - genetics ; Signal Transduction - physiology ; Smad2 Protein - metabolism ; Transforming Growth Factor beta - metabolism ; Transforming Growth Factor beta1 - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-05, Vol.111 (21), p.7723-7728</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the Uinted States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653</citedby><cites>FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23774666$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23774666$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24812125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawasaki, Kyoko</creatorcontrib><creatorcontrib>Freimuth, Julia</creatorcontrib><creatorcontrib>Meyer, Dominique S.</creatorcontrib><creatorcontrib>Lee, Marie M.</creatorcontrib><creatorcontrib>Tochimoto-Okamoto, Akiko</creatorcontrib><creatorcontrib>Benzinou, Michael</creatorcontrib><creatorcontrib>Clermont, Frederic F.</creatorcontrib><creatorcontrib>Wu, Gloria</creatorcontrib><creatorcontrib>Roy, Ritu</creatorcontrib><creatorcontrib>Letteboer, Tom G. W.</creatorcontrib><creatorcontrib>van Amstel, Johannes Kristian Ploos</creatorcontrib><creatorcontrib>Giraud, Sophie</creatorcontrib><creatorcontrib>Dupuis-Girod, Sophie</creatorcontrib><creatorcontrib>Lesca, Gaeten</creatorcontrib><creatorcontrib>Westermann, Cornelius J. J.</creatorcontrib><creatorcontrib>Coffey, Robert J.</creatorcontrib><creatorcontrib>Akhurst, Rosemary J.</creatorcontrib><title>Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3 , on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b C⁵⁷ haplotype suppresses prenatal lethality of Tgfb1 ⁻/⁻ embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFβRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFβRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFβR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFβ signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFβ/bone morphogenetic protein receptor genes, ENG , encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFβ-regulated vascular disease.</description><subject>ADAM Proteins - genetics</subject><subject>ADAM Proteins - metabolism</subject><subject>ADAM17 Protein</subject><subject>Alleles</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood Vessels - pathology</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genetic loci</subject><subject>Genetic mutation</subject><subject>Genetic Variation</subject><subject>Hereditary hemorrhagic telangiectasia</subject><subject>Human genetics</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Luciferases</subject><subject>Medical genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NIH 3T3 Cells</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Smad2 Protein - metabolism</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming Growth Factor beta1 - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9uEzEQh1cIRNPCmRPgYy9pPbbXfy5IVUUDUiUOtGdrsuvduNq1g72plNfiQXgmHCUkcMOXOfibTzPzq6p3QK-AKn69DpivgINWEsp7Uc2AGphLYejLakYpU3MtmDirznN-opSaWtPX1RkTGhiwelalhQtu8g15xuQxTJnEjty0OIIire86l1yYPA7DliTXbwacHHlY3P36SbLvAw4-9GSKZIwF3hZJbgqTyBqnVRxivyU-kNE3jmBoyWozYshvqlcdDtm9PdSL6vHu88Ptl_n9t8XX25v7eSOMnOYG6pq3y0ZScJppNG0noRW6cdhyqnQt284ZtwTeUCNFq5fCoENQAJ1ZyppfVJ_23vVmObq2KYskHOw6-RHT1kb09t-f4Fe2j89WUEFro4vg8iBI8cfG5cmOPjduGDC4uMkWaik1Z4b9D8qFMowDLej1Hm1SzDm57jgRULsL1e5CtadQS8eHvxc58n9SLMDHA7DrPOoALAOrFOOFeL8nnvIU08nAlRJSypOhw2ixTz7bx--MgqQUBDflmr8BATK9Iw</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Kawasaki, Kyoko</creator><creator>Freimuth, Julia</creator><creator>Meyer, Dominique S.</creator><creator>Lee, Marie M.</creator><creator>Tochimoto-Okamoto, Akiko</creator><creator>Benzinou, Michael</creator><creator>Clermont, Frederic F.</creator><creator>Wu, Gloria</creator><creator>Roy, Ritu</creator><creator>Letteboer, Tom G. W.</creator><creator>van Amstel, Johannes Kristian Ploos</creator><creator>Giraud, Sophie</creator><creator>Dupuis-Girod, Sophie</creator><creator>Lesca, Gaeten</creator><creator>Westermann, Cornelius J. J.</creator><creator>Coffey, Robert J.</creator><creator>Akhurst, Rosemary J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140527</creationdate><title>Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans</title><author>Kawasaki, Kyoko ; Freimuth, Julia ; Meyer, Dominique S. ; Lee, Marie M. ; Tochimoto-Okamoto, Akiko ; Benzinou, Michael ; Clermont, Frederic F. ; Wu, Gloria ; Roy, Ritu ; Letteboer, Tom G. W. ; van Amstel, Johannes Kristian Ploos ; Giraud, Sophie ; Dupuis-Girod, Sophie ; Lesca, Gaeten ; Westermann, Cornelius J. J. ; Coffey, Robert J. ; Akhurst, Rosemary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ADAM Proteins - genetics</topic><topic>ADAM Proteins - metabolism</topic><topic>ADAM17 Protein</topic><topic>Alleles</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood Vessels - pathology</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genetic loci</topic><topic>Genetic mutation</topic><topic>Genetic Variation</topic><topic>Hereditary hemorrhagic telangiectasia</topic><topic>Human genetics</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Luciferases</topic><topic>Medical genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NIH 3T3 Cells</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Smad2 Protein - metabolism</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming Growth Factor beta1 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawasaki, Kyoko</creatorcontrib><creatorcontrib>Freimuth, Julia</creatorcontrib><creatorcontrib>Meyer, Dominique S.</creatorcontrib><creatorcontrib>Lee, Marie M.</creatorcontrib><creatorcontrib>Tochimoto-Okamoto, Akiko</creatorcontrib><creatorcontrib>Benzinou, Michael</creatorcontrib><creatorcontrib>Clermont, Frederic F.</creatorcontrib><creatorcontrib>Wu, Gloria</creatorcontrib><creatorcontrib>Roy, Ritu</creatorcontrib><creatorcontrib>Letteboer, Tom G. W.</creatorcontrib><creatorcontrib>van Amstel, Johannes Kristian Ploos</creatorcontrib><creatorcontrib>Giraud, Sophie</creatorcontrib><creatorcontrib>Dupuis-Girod, Sophie</creatorcontrib><creatorcontrib>Lesca, Gaeten</creatorcontrib><creatorcontrib>Westermann, Cornelius J. J.</creatorcontrib><creatorcontrib>Coffey, Robert J.</creatorcontrib><creatorcontrib>Akhurst, Rosemary J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawasaki, Kyoko</au><au>Freimuth, Julia</au><au>Meyer, Dominique S.</au><au>Lee, Marie M.</au><au>Tochimoto-Okamoto, Akiko</au><au>Benzinou, Michael</au><au>Clermont, Frederic F.</au><au>Wu, Gloria</au><au>Roy, Ritu</au><au>Letteboer, Tom G. W.</au><au>van Amstel, Johannes Kristian Ploos</au><au>Giraud, Sophie</au><au>Dupuis-Girod, Sophie</au><au>Lesca, Gaeten</au><au>Westermann, Cornelius J. J.</au><au>Coffey, Robert J.</au><au>Akhurst, Rosemary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>111</volume><issue>21</issue><spage>7723</spage><epage>7728</epage><pages>7723-7728</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3 , on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b C⁵⁷ haplotype suppresses prenatal lethality of Tgfb1 ⁻/⁻ embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFβRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFβRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFβR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFβ signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFβ/bone morphogenetic protein receptor genes, ENG , encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFβ-regulated vascular disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24812125</pmid><doi>10.1073/pnas.1318761111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-05, Vol.111 (21), p.7723-7728 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566832928 |
source | NCBI_PubMed Central(免费); JSTOR Archival Journals and Primary Sources Collection |
subjects | ADAM Proteins - genetics ADAM Proteins - metabolism ADAM17 Protein Alleles Angiogenesis Animals Biological Sciences Blood Vessels - pathology Gene expression regulation Gene Expression Regulation - genetics Gene Expression Regulation - physiology Genetic loci Genetic mutation Genetic Variation Hereditary hemorrhagic telangiectasia Human genetics Humans Immunohistochemistry Luciferases Medical genetics Mice Mice, Inbred C57BL NIH 3T3 Cells Signal Transduction - genetics Signal Transduction - physiology Smad2 Protein - metabolism Transforming Growth Factor beta - metabolism Transforming Growth Factor beta1 - genetics |
title | Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variants%20of%20Adam17%20differentially%20regulate%20TGF%CE%B2%20signaling%20to%20modify%20vascular%20pathology%20in%20mice%20and%20humans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kawasaki,%20Kyoko&rft.date=2014-05-27&rft.volume=111&rft.issue=21&rft.spage=7723&rft.epage=7728&rft.pages=7723-7728&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1318761111&rft_dat=%3Cjstor_proqu%3E23774666%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-91553dbc601e828a9df61d48cead307856dfe9eb13c0964d8b49aea1711f9b653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1534792310&rft_id=info:pmid/24812125&rft_jstor_id=23774666&rfr_iscdi=true |