Loading…
Divergence of Trends in US and UK Aggregate Exergy Efficiencies 1960–2010
National exergy efficiency analysis relates the quality of primary energy inputs to an economy with end useful work in sectoral energy uses such as transport, heat and electrical devices. This approach has been used by a range of authors to explore insights to macroscale energy systems and linkages...
Saved in:
Published in: | Environmental science & technology 2014-08, Vol.48 (16), p.9874-9881 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | National exergy efficiency analysis relates the quality of primary energy inputs to an economy with end useful work in sectoral energy uses such as transport, heat and electrical devices. This approach has been used by a range of authors to explore insights to macroscale energy systems and linkages with economic growth. However, these analyses use a variety of calculation methods with sometimes coarse assumptions, inhibiting comparisons. Therefore, building on previous studies, this paper first contributes toward a common useful work accounting framework, by developing more refined methodological techniques for electricity end use and transport exergy efficiencies. Second, to test this more consistent and granular approach, these advances are applied to the US and UK for 1960 to 2010. The results reveal divergent aggregate exergy efficiencies: US efficiency remains stable at around 11%, while UK efficiency rises from 9% to 15%. The US efficiency stagnation is due to “efficiency dilution”, where structural shifts to lower efficiency consumption (e.g., air-conditioning) outweigh device-level efficiency gains. The results demonstrate this is an important area of research, with consequent implications for national energy efficiency policies. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es501217t |