Loading…
Geant4 Simulations of the SuperCDMS iZIP Detector Charge Carrier Propagation and FET Readout
The SuperCDMS experiment aims to directly detect dark matter particles called WIMPs (weakly interacting massive particles). The detectors measure phonon and ionization energy due to nuclear and electron recoils from incident particles. The SuperCDMS Detector Monte Carlo group uses Geant4 to simulate...
Saved in:
Published in: | Journal of low temperature physics 2014-09, Vol.176 (5-6), p.930-936 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The SuperCDMS experiment aims to directly detect dark matter particles called WIMPs (weakly interacting massive particles). The detectors measure phonon and ionization energy due to nuclear and electron recoils from incident particles. The SuperCDMS Detector Monte Carlo group uses Geant4 to simulate electron-hole pairs (
e
-
/
h
+
) and low temperature phonons. We use these simulations in order to study energy deposition in the detectors. Phonons and electron-hole pairs are tracked in a crystal detector. Because of the band structure of the crystals, the electrons undergo oblique propagation. The charge electrodes on each side of the detector are biased at different voltages while the phonon sensors are grounded. This creates a nearly uniform electric field through the bulk of the detector, with a complex shape near the surfaces. The electric field is calculated from interpolating on a tetrahedral mesh. The resulting TES phonon readout, as well as the FET charge readout are simulated. To calculate the FET readout, the Shockley-Ramo theorem is applied to simulate the current in the FET. The goal of this paper is to describe the theory and implementation of calculating the electric field, performing the charge carrier propagation, and simulating the FET readout of the SuperCDMS detectors. |
---|---|
ISSN: | 0022-2291 1573-7357 |
DOI: | 10.1007/s10909-014-1182-9 |