Loading…
Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern
The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The inf...
Saved in:
Published in: | Acta geotechnica 2014-08, Vol.9 (4), p.673-694 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The influence of the lining joint pattern, including segmental lining joints and their connections, has in particular been taken into consideration. The impact of the processes during mechanized excavation, such as the grouting pressure and the jacking forces in the structural forces induced in the tunnel lining, has been presented. These values depend on the tunnel advancement. However, a negligible influence of the joint pattern on the ground displacement field surrounding the tunnel has been observed. Generally, a variation in the structural forces in successive rings along the tunnel axis has been found in a staggered segmental lining, indicating the necessity of simulating the joints in the tunnel lining and using a full three-dimensional numerical model to obtain an accurate estimation. In addition, the considerable influence of the coupling effect between successive rings on the lining behaviour has been highlighted. |
---|---|
ISSN: | 1861-1125 1861-1133 |
DOI: | 10.1007/s11440-013-0279-7 |